گسترش مالی و رشد اقتصادی: آزمون‌های ریشه واحد و همگرایی در حضور تغییر جهت‌های ساختاری (شواهد تجربی از اقتصاد ایران 1378-1374)

نویسنده: علی حسین صمیمی

چکیده
هدف این مقاله بررسی رابطه بین پایداری و کوئامدت بین متغیرهای گسترش مالی و رشد اقتصادی بر اساس آزمون همگرایی بونهالس - زوسلوس و گریگوری - هانسن و آزمون‌های علیت از نوع گر انجر. می‌باشد. براساس اطلاعات سالیانه دوره 1374-1378، این نتیجه به دست آمده است که فقط یک رابطه علی کوئامدت بین این متغیرها در اقتصاد ایران و از گسترش مالی به رشد اقتصادی وجود دارد. این نتیجه از فرضیه رشد به نفع عرضه حمایت کرده و ایجاد و گسترش مؤسسات مالی جدید را برای انبساط سرمایه و در نهایت، رشد اقتصادی بیش‌تر می‌نماید.

1. مقدمه
توسعه اقتصادی را می‌توان از دو جنبه بررسی کرد: جنبه کالایی یا واقعی و جنبه مالی یا جنبه

* عضو هیئت علمی و رئیس گروه اقتصاد دانشگاه آزاد اسلامی شیراز

1. Real or Goods Aspect
2. Financial Aspect
واقعی، توسعه اقتصادی بر حسب میزان نرخ، نرخ کار، تولید و درآمد مورد بحث قرار می‌گیرد و در جنبه مالی توسعه به نقش واسطه‌های مالی از بسیج و هدایت پس اندازها به سمت سرمایه‌گذاری‌های مولده توجه می‌شود. در تحلیل فراوریتوسعه اقتصادی معمولاً به نیرو مانابی از قبیل سرمایه‌های فیزیکی و توانایی‌های مدیریتی افراد (جهنهای واقعی) اشاره می‌شود، وی مک کینون (۱۹۷۳) به انحرافات در بازارهای داخلی سرمایه‌های در دوره‌های در حال توسعه (به جای کمیابی مالی/ سرمایه) یعنی به جنبه مالی تأکید کرد و به طور مشخص این جنبه از تحلیل توسعه اقتصادی، از زمان انتشار مقاله‌های گارلی - شاو (۱۹۵۵) جایگاه خود را در مثابه اقتصادی بیدا کرد. در حالی که پیش از آن، به فراموشی سپرده شده بود.

در سال ۱۹۱۱، شومپریت به اهمیت نقش پول و اعتبار در فراوری توسعه اقتصادی اشاره کرد و بحث کرد که گسترش مالی برای رشد اقتصادی ضروری است. (گارلی و شاو (۱۹۵۵) با بررسی جنبه مالی توسعه اقتصادی به نقش تأمین مالی توسعه اقتصادی تأکید ورودیت و بیان کردن که نظریه‌های سنتی پول، بهره و درآمد، توجه ناکافی به روابط مهم مکوس بین توسعه واقعی و توسعه مالی داشته‌اند. (گلداستیت (۱۹۶۰) نیز عقیده داشت که فراساختارهای مالی، رشد اقتصادی را شتاب‌داده و عملکرد اقتصادی را به‌ویژه می‌بخشد. پاتریک (۱۹۶۴) با این که معتقد بود نظام مالی به سه شیوه می‌تواند بر ابتدا سرمایه‌برای رسیدن به رشد اقتصادی اثر بگذارد، اما با مطرح کردن یک پرسش اساسی، رابطه علی‌البدل توسعه در مثابه اقتصادی را زیر سوال گردید.

مک کینون (۱۹۷۳) و شاو (۱۹۷۲) نیز به نقش آزادسازی مالی در فراوری توسعه اقتصادی کشورهایی که با مسئله سرمایه‌نگاری مالی وابسته‌هایی (۱۹۵۹) گارلی و شاو (۱۹۵۹) مطالعات اقتصادی را به‌ویژه می‌بخشد. (نوت ۱۷۷، ص ۱۸۳) ۱۲۸.

۱. واسطه‌های مالی عموماً مركب از بانک‌های تجاری (Commercial)، شرکت‌های تعاونی اعتباری (Merchant)، شرکت‌های اسکناس، وام مسکن، شرکت‌های بیمه، بانک‌های پژوهشی و غیره می‌باشد.

۲. Financial Deepening

۳. Financial Superstructures

۴. برای بررسی مسئله سرمایه‌برداری، نگاه کنید به: صمدی، ۱۳۷۸.

۵. برای بحث درباره تکامل تدریجی، عناصر، بهبودها و شرایط موافقیت در اجرای آزادسازی مالی، نگاه کنید به: رماناتان و سامولن، ۱۹۹۹ صص ۲۰-۳۲.
فرای (1978) نیز در همین راستا بوده است. در بیشتر کشورهایی در حال توسعه، بانک مرکزی یا دولت با دخالت در تعیین نرخ‌های بهره و تخصیص اعتبار، باعث ایجاد انحرافات در عملکرد بانک‌ها می‌گردد. بنابراین، بهبود استراتژی‌های مالی در زمینه‌های مختلف به بروز یک‌پدیده بسیار مالی می‌شود. بنابراین، باعث اختلال در عملکرد و استراتژی‌های مالی می‌گردد. سیاست‌های آزادسازی مالی (یا رفع سرکوب مالی) در واقع، برای حذف یا کاهش انحرافات اتخاذ می‌گردد.

جانگ (1946) از داده‌های سال‌های 45 کشور (شامل 12 کشور صنعتی و 32 کشور در حال توسعه از جمله ایران) استفاده کرده و رابطه علیک طرف به میانگین استراتژی را به دست می‌آورد. سپس با تلفیق داده‌های سری زمانی و مقطع عرضی، نتیجه‌گیری که در کشورهای در حال توسعه، رابطه علیک عمداً از گسترش مالی به رشد اقتصادی برقرار می‌باشد، و بنابراین، گسترش مالی، علت رشد اقتصادی است. تورنتون (1994) براساس اطلاعات 22 کشور از آسیا، آمریکای لاتین و جویه کارائیب و با استفاده از آزمون‌های علت گرنبه، رابطه این دو متغیر را بررسی کرده و نتیجه‌گیری می‌گیرد که در هشت کشور، یک رابطه علیک در طرف وجود دارد. در هفت مورد، گسترش مالی (در سطح معناداری مختلف) منجر به رشد اقتصادی شده است. در شش کشور، رشد اقتصادی علت گسترش مالی بوده است و در کشور مکزیک از نظریه ساختار گرایان (مبنی بر به تبعیق انداختن رشد اقتصادی به واسطه گسترش مالی) حمایت شده است.

1. Proxy Variable

در قسمت دوم این مقاله، روش‌های مورد استفاده در بررسی رابطه بین گسترش مالی و رشد اقتصادی را مطالعه می‌نماییم و در بخش آخر با جمع‌بندی مطالب، پیشنهادهایی را ارائه می‌کنیم.

2. روش شناسی موضوع

2-1. مباحث نظری

باتریک (1966) با مطرح کردن این پرسش که کدام بخش (مالی یا واقعی) منجر به فرایند پویای توسعه اقتصادی می‌گردد، رابطه یک طرفه گسترش مالی و رشد اقتصادی را زیر سؤال برده و زمینه را برای مطالعات تجربی فراهم کرد. و ضمن مطرح کردن ضرورت بررسی رابطه عملی بین متغیرهای گسترش مالی و رشد اقتصادی، فرضیه‌های تأثیر مالی به تبع عرضه و تأثیر مالی متنگی به تقاضا و مطرح کردن این فرضیه‌ها، راهبردهای آزمایشی برای تشويق رشد اقتصادی می‌پاشند.

فرضیه رشد به تبع عرضه، بیان می‌کند که گسترش مالی عامل برای رشد اقتصادی است. در این صورت، ایجاد و گسترش مؤسساتی مالی جدید، ابزار مهمی برای انبساط سرمایه، و در نهایت، رشد اقتصادی است. بسط نظام مالی نباید باعث افزایش تقاضا برای خدمات مالی می‌گردد و با هدایت منابع کمیاب از پی اندازکننده‌گان کوچک به سرمایه گذاران بزرگ، به خصوص مالی گسترش یافته و منجر به رشد واقعی می‌گردد. بنابراین، می‌توان گفت پیشنهاد اصلی این فرضیه این است که بسط و گسترش بخش مالی داخلی، منجر به بسط طرف واقعی اقتصادی می‌گردد.

1. Supply-Leading

2. Demand - Following
فرضیه تأمین مالی منکی به تثبیت کلیه علی معاویسي را بحث می‌کند و بیان می‌کند که رشد بخش واقعی باعث تشویق بازار مالی داخلی می‌گردد. به عبارت دیگر، براساس این فرضیه، می‌توان گفت که بخش واقعی (توبع به مالی) منجر به فراگیر پویای توسعه اقتصادی می‌گردد. اگر بخش واقعی اقتصاد توسعه یابد، تفاوت‌های این طرف برای خدمات مالی و خدمات آنها در پاسخ به تفاوت‌های مالی و خدمات آنها در پاسخ به تفاوت‌های سرمایه‌گذاران و پس‌اندازکردنگان (در بخش واقعی اقتصاد) برای این خدمات ایجاد شود.

مسیر استاسی در آزمون‌های تجربی، انتخاب و معرفی متغیرهای نماینده برای متغیرهای رشد اقتصادی و گسترش مالی است. در مطالعات مختلف برای رشد اقتصادی از سه متغیر نماینده و برای گسترش مالی از چهار متغیر نماینده استفاده شده است. از تولید ناخالص ملی واقعی سرائی (EG1) و رشد ناخالص داخلی واقعی سرائی (EG2) به عنوان متغیرهای نماینده رشد اقتصادی و از نسبت حجم کل سیره‌های بانکی (یعنی مجموع سیره‌های دیداری و سیره‌های پس‌انداز) به تولید ناخالص داخلی (FD1)، نسبت اسکناس و مسکوک در دست اشخاص به تعريف محدود پول (FD2) و نسبت تعريف و سیستم پول به تولید ناخالص داخلی (FD3) به عنوان متغیرهای نماینده گسترش مالی در مطالعات جانگ (1986)، تورنتون (1994) و دارات (1994) استفاده شده است.

وگل و باسیز (1974) بحث می‌کند که می‌توان در تعريف پیچیدگی ۳ بازارهای مالی داخلی را ارزیابی کرده و می‌توان (FD3) که اغلب متغیر پولی کرد اقتصاد ۳ نامی‌شد. این اندیشه نظام مالی را نشان‌داده‌گیری می‌کند که در نسبت (FD2) بدين معناست که متنوعی سازی بالا بی در مؤسس‌های مالی صورت گرفته است و همچنین افزایش در متغیر (FD3) نشان دهنده گسترش بازار مالی در مقایسه با پیش‌کات

1. در تعريف (CP) بحث می‌کند که اسکناس و مسکوک در دست اشخاص (FD1 = (M2-CP)/GDP) به این علت از تعريف وسیع پول (M2) که شده است که اسکناس و مسکوک در دست اشخاص از طريق شبکه بانکی به عنوان واسطه مورد استفاده قرار گرفت. قیمت گیر (تورنتون، 1994).

2. Complexity

3. Monetization
2- مباحث اقتصادسنجی

2-1. آزمون‌های ریشه واحد و همگرایی در حضور تغییر جهت ساختاری

پیش از انجام آزمون‌های همگرایی، بررسی داده‌ها برای انتخاب نوع آزمون‌های ایستایی یا ناپایستایی مورد استفاده قرار می‌گیرد. در این منظور از آزمون‌های دیکی، فولر و دیکی، فولر افزوده (ADF) به عنوان متداول ترین روش‌های آزمون‌های ایستایی سری‌های زمانی استفاده می‌شود. پرون (1989) با کار پیشرو خود تأثیر تغییر جهت‌های ساختاری بین آزمون‌های ریشه واحد را مطرح کرده و به صورت تحلیلی و تجربی نشان داده که حضور تغییر جهت ساختاری در سری‌های زمانی ایستایی می‌تواند موجب ریشه‌های واحد صوری گردد. پرون (1989) بیان کرد که هر گاه سری‌های زمانی نوسان‌های ایستایی در اطراف یک رونده صوری دارای تغییر جهت ساختاری داشته باشد، آزمون‌های متعارف ریشه‌های واحد به سمت پذیرفتن فرضیه صفر اشتیاق ریشه‌های واحد از دست می‌دهند. بنابراین، پرون اشاره می‌کند که آزمون‌های ریشه‌های واحد معمولی در حضور تغییر جهت‌های ساختاری ممکن است که از قدرت پایینی برخوردار گردد. وی برای در نظر گرفتن تأثیر این تغییر جهت‌ها، تاریخ وقوع آن را معلوم کرده و با در نظر گرفتن دو ولگو پسماند دور افتاده ایداعی (IOM) و پسماند دور افتاده جمعی (AOM) به بررسی این تغییر جهت‌ها بین آزمون‌های متعارف ریشه‌های واحد

1. Innovation Outlier Model

این اصطلاحات به تبعیت از کار باکس و تیانو (1975) پیوسته و مشخص می‌کند که تغییر به تابع روند جدید، به صورت تدريجی صورت می‌گیرد.

2. Additive Outlier Model

این الگو بیان می‌کند که تغییر به تابع روند جدید به صورت آنی رخ می‌دهد. نگارش معتقد است که حوادث بزرگی یا قابل قبول انقلاب جنگ، تغییر جهت شدید در تصمیم‌گیری‌های مسئولان، باعث تغییرات آنی در تابع روند متقابل می‌شوند.
فردایت 1

هندی و نیلی (1991) ضمن تشريح این مطلب که تمامی بین سری های زمانی با فراوانی (0) به همراه تغییر جهت ساختاری و سری های زمانی ایجاد شده با فراوانی (1) بسیار مشکل است، براساس آزمایش های شبیه سازی مونت کارلو به این مطلب اشاره می کند که حتی شکستگی های کوچک در تابع روند می تواند قدرت آزمون های متعارف ریشه واحد را به شدت کاهش دهد. همچنین اندازگیری این آزمون ها تحت تأثیر این شکستگی ها قرار گرفته و بنابراین، هنگامی که از آزمون های متعارف ریشه واحد برای سری های دارای تغییر جهت ساختاری استفاده کنیم، قدرت کمتری خواهند داشت.

الگوی تغییر جهت ساختاری محض، و الگوی تغییر جهت ساختاری جزئی در الگوی محض، تمام پارامترها مقید به تغییر هستند، ولی در الگوی جزئی یکین قید و محدودیت وجود ندارد. مزیت الگوی تغییر جهت ساختاری جزئی در این است که در حفاظت درجات آزادی کمک کرده و شامل تخمین بسیار کارآمد از پارامترهای رگرسیون می‌گردد. حفاظت درجات آزادی در مطالعات دارای مشاهده کم و با رگرسورهای زیاد از اهمیت خاصی برخوردار است (بای، ۱۹۹۷: جهت و پرون، ۱۹۹۸).

هرگاه براساس این روشهای وجود تغییر جهت ساختاری به اثبات بررسی بررسی ایستایی یا نایستایی سری‌های زمانی مورد مطالعه باید از آزمون‌های ریشه‌ای در حضور تغییر جهت ساختاری استفاده کرده که می‌توان به برخی از مطالعات مانند پرون (۱۹۸۹، آزمون‌های IO، A)، سیلوالا (۱۹۹۴، لی و همکاران ۱۹۹۷، آزمون‌های اصلی) نسبت به خودکنگ (۱۹۹۱)، هوانگ و اشمبیت (۱۹۹۶)، پرون و گل سنج (۱۹۹۲) اشاره کرد.

در صورت تایید نایستایی بودن متمرکز‌های مورد مطالعه براساس این روش‌ها، باید از آزمون‌های همگراپی در حضور تغییر جهت ساختاری استفاده کرده که می‌توان به آزمون‌های کامپوس، اریکسون و هندلر (۱۹۹۴)، آزمون‌های سری‌های گرگوری - هانسن (۱۹۸۶)، گرگوری و نیسون و وات (۱۹۹۴) در بین سایر مطالعات اشاره کرد. استفاده از آزمون‌های همگراپی متغیر انگل - گرچی (۱۹۸۷)، یوهانسن و زوساییوس (۱۹۹۰) و... در این حالت ممکن است منتج به نتایج اشتباهی گردد.

در این قسمت، به تشریح آزمون تعیین تاریخ تغییر جهت ساختارگی گرگوری - هانسن (۱۹۹۴) همچنین روش همگراپی گرگوری - هانسن (۱۹۹۴) برداخته و در مطالعه تجريی از این آزمون‌ها استفاده خواهیم کرد. در این آزمون‌ها، به فرم بسیار کلی همگراپی، توجه شده و وجود یک تغییر جهت ساختاری در بردار همگراپی جایگاه شمزده شده است. فرضیه صفر این آزمون‌ها بی‌ربط همگراپی) همانند آزمون‌های مرسوم بوده، ولی فرضیه رقیب آن با سایر آزمون‌ها تفاوت دارد. این آزمون برای روابط همگراپی در حضور احتمالی تغییر جهت ساختاری طراحی شده است و

1. Pure-Structural Change Model
2. Partial-Structural Change Model
3. Point Optimal Test
یک آزمون همگراپی براساس جملات پسماندی می‌باشد. از مزایای بارز این آزمون، این است که نقطه تغییر جهت (تاریخ شکستگی) را به صورت درون زا تخمین می‌زنند.

گریگوری - هانسن (1994) برای استخراج آماره آزمون خود از رگرسیون همگراپی متعارف زیر استفاده کرده‌اند:

\[y_{l_t} = \alpha + \beta y_{l_t-1} + \epsilon_t, \quad t = 1, 2, \ldots, T \] \hspace{1cm} (1)

که در آن \(y_{l_t} \) یک بردار \(m \) متغیره و (1) یک بوده و \(\epsilon_t \) یک متغیر (0) فرض می‌شود.

در این آزمون، اشکال مختلفی برای همگراپی تغییر جهت ساختاری در نظر گرفته شده است که به صورت زیر می‌باشد:

\[y_{l_t} = \alpha_0 + \alpha_1 D_{lth} + \beta_2 y_{l_t-1} + \epsilon_t, \quad t = 1, 2, \ldots, T \] \hspace{1cm} (2)

\[y_{l_t} = \alpha_0 + \alpha_1 D_{lth} + \beta_2 y_{l_t-1} + \gamma t + \epsilon_t, \quad t = 1, 2, \ldots, T \] \hspace{1cm} (3)

\[y_{l_t} = \alpha_0 + \alpha_1 D_{lth} + \beta_2 y_{l_t-1} + \beta_3 y_{l_t-1} D_{lth} + \epsilon_t, \quad t = 1, 2, \ldots, T \] \hspace{1cm} (4)

معادله (2) به الگوی تغییر در سطح \(\lambda \) معادله (3) به الگوی تغییر در سطح به همراه روند \(\gamma \) و معادله (4) به الگوی تغییر رژیم (تغییر جهت ساختاری) \(\beta_3 \) معروف می‌باشد.

\[D_{lth} \]

متغیر مجازی است و مقدار صفر چنانچه \(\lambda \) > 1 و مقدار یک در غیر این صورت به خود می‌گیرد.

گریگوری - هانسن (1994) برای روابط همگراپی در حضور احتمالی تغییر جهت ساختاری و همچنین تخمین نقطه شکستگی از جملات پسماند هر کدام از معادلات (2) \(\lambda \) (یک دیگر) استفاده کرده و آماره‌های آزمون فیلیپس (1977) و دیکی - فولر افزوده (ADF) را به فرضیه رقیب استفاده کرده و آماره‌های آزمون پیشنهاد کرده‌اند که شرح مفصل آن در پیوست آمد است.

1. Level Shift Model
2. Level Shift with Trend
3. Regime Shift Model
4. مقداری بحرانی می‌باشد این آمارها در سطوح 1% و 5% و 10% برای 1 تا 3 رگرسور در مقاله گریگوری - هانسن (1994) ص 109 آمده است.
 نقطه شکستگی (تاریخ تغییر جهت) را نیز سال مربوط به این آمارها مشخص می‌کند.

\[
\begin{align*}
z^* u &= \inf_{h \in t} Z_{u}(h) \\
z^* i &= \inf_{h \in t} Z_{i}(h) \\
ADF^*(h) &= \inf_{h \in t} ADF(h)
\end{align*}
\]

 gereenjer (1969) با کار پیشرو خود، مفهوم علمی در اقتصاد سنجی را مطرح کرد و به تشریح آن و نحوه بررسی مسئله علمی بین سری‌های زمانی در قلمرو زمان و قلمرو فرکانس برداخت. سیمز (1972) با بررسی رابطه بین دو متغیر پول و درآمد و با استفاده از خطوط پیشنهادی گرنجر، روش دیگری را مطرح کرد. از روش‌های پیشنهادی این دو پژوهشگر به طور وسیع و در زمینه‌های مختلف اقتصادی استفاده شده است.

زلنر (1979)، هاف (1979)، پیرس (1977) و فوک (1982) نیز هر کدام به طریقی به نحوه بررسی مسئله علمی بین دو یا چند سری زمانی در قلمرو زمان پرداخته‌اند. فصل مشترک همه این روش‌ها در استفاده از تعریف ارائه‌شده توسط گرنجر می‌باشد.

برای انجام آزمون‌های مرسوم از نوع گرنجر از روش حداقل مربعات معمولی (OLS) استفاده می‌گردد. یکی از شرایط لازم برای یک آزمایش در روش تخمین، ابستا بودن متغیرهای مستقل و واپس‌های می‌باشد. هر گاه متغیرها نالیستا باشند، تخمین رگرسیون با استفاده از روش OLS امکان بروز ندارند.

1. گریگوری هانسن (1996) به می‌کند که اساساً ترین نوع تغییر جهت ساختارگذاری الگوی تغییر جهت یک سری زمانی است و برای بررسی احتمال وجود بیش از یک تغییر جهت به تحلیل‌های بسیار دقیق تری نیاز داریم.

2. Time Domain
3. Frequency Domain
4. Stationary
پیدیه رگرسیون جعلی را فراهم می‌آورد (گریجینر و نیوپولد، 1974). بیشتری‌ها اخیر در تحلیل سری‌های زمانی در اقتصاد سنگین این زمینه را فراهم کرده است که از متغیرهای نالیستا نیز استفاده گردد. در این زمینه، فنون همگرایی در اواخر دهه 1980 معرفی شده و این تکنیک روشی برای بررسی رابطه تعادلی بیان داده‌ای بین دو یا چند متغیر است که از متغیرهای نالیستا استفاده می‌کنند.

براساس مطالعات با می‌توان گفت که گام اول در انجام هر گونه تخمین در اقتصادسنگی بررسی نالیستا به تجزیه سری‌های زمانی است. هر گاه براساس روش‌های مناسب بررسی آزمون‌های نالیستا و آزمون‌های همگرایی، متغیرهای مورد استفاده نالیستا (1) بوده، اما بین متغیرها و رابطه همگرایی تایید نگردید، در این حالت نتیجه اکثر پروژه دیگری تحت عنوان "علت محلی" فراهم می‌شود (اکسکلی و کریزیلی، 1998). بنابراین، برای فاقد آمدن برهم مشکلات اشاره شده، دارای انجام آزمون‌های علت براساس آزمون‌های گریجینر از یک روش سه مرحله‌ای به صورت زیر استفاده می‌شود.

مرحله اول: تعبیه مرتبه هم بستگی متغیرهای مورد نظر (؟) براساس روش‌های مناسب.

مرحله دوم: بررسی وجود یا نبود رابطه همگرایی بین متغیرهای مورد نظر براساس روش‌های مناسب در صورت نالیستا بودن متغیرها.

مرحله سوم: بررسی وجود یا نبود رابطه علی‌که بین متغیرها با شباهت‌ها و روش‌های مناسب و صحیح.

پذیرش روش سه مرحله‌ای اشاره شده در بالا منجر به سه روش آلترناتیو آزمون علتی گردد.

۱. انجام آزمون‌های علت با متغیرهای (1) در حضور رابطه همگرایی
۲. انجام آزمون‌های علت با متغیرهای (0) در حضور رابطه همگرایی
۳. انجام آزمون‌های علت با متغیرهای (0) و نبود رابطه همگرایی (آزمون پیشنهادی)

1. Spurious Regression
2. Cointegration
3. Spurious Causality
بهنام زینبی. و در صورت استفاده از متغیرهای (0) خواهیم داشت:

\[DX_t = a + \sum_{i=1}^{m} b_i X_{t-i} + \sum_{j=1}^{n} c_j Y_{t-j} + K.ECM_{t-1} + u_t \]
\[DY_t = d + \sum_{i=1}^{q} e_i Y_{t-i} + \sum_{j=1}^{r} f_j X_{t-j} + L.ECM_{t-1} + v_t \]

و در صورت نیبود رابطه همگرایی، تنها با متغیرهای (0) این آزمونها انجام می‌گردد. در این حالت، معادلات (8) و (9) با یک عبارت جمله‌ای صلاح خطاپا یک وقتی پک زمین (I:CM_{t-1}) و (I:ECM_{t-1}) می‌باشند، در روش‌های بالا، X_{t-1} می‌باشد، در روش‌های بالا، X_{t-1} می‌باش...
۳. نتایج تجربی
آزمون ریشه‌ی واحد متغیرهای مورد استفاده بر اساس آزمون احتمالی تغییر جهت ساختاری از آزمون همگراپایی (ADF) فولر افزوده (نرشن ۰۱)
در همه که تمام متغیرها در سطوح خود متغیری (۱) زبانه و تفاوت مربوط اول آنها متغیری (۰)

برای رده‌بندی رابطه همگراپایی در حضور احتمالی تغییر جهت ساختاری، از آزمون همگراپایی
گریگوری - هانسن (۱۹۹۴) استفاده شده است، نمودار و جدول ۱ براساس آماره
ابرای متغیرهای (C/S), (C/T), (C)
گریگوری - هانسن و با توجه به الگوهای
تغییر FD2 EG2.

۱. نتایج (در حالت حضور تغییر جهت ساختاری و نبود آن) در اینجا گزارش نشده است.
جدول ۱. نتایج آزمون همگراپی گریگوری - هانسن (۱۳۷۸-۱۳۷۴)

<table>
<thead>
<tr>
<th>(C)</th>
<th>(C / T)</th>
<th>(C / S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADI</td>
<td>۲.۲۳۲۳</td>
<td>۲.۴۵۲۲</td>
</tr>
<tr>
<td>۱۳۴۵</td>
<td></td>
<td>۱۳۵۶</td>
</tr>
</tbody>
</table>

اعداد داخل [] نشان دهنده تغییر تاریخ تغییر جهت می‌باشد که به صورت درون‌زا و براساس پیش آزمون گریگوری - هانسن تخمین زده شده است.

نمودار ۱. تغییر رژیم براساس آماره ADF گریگوری - هانسن

۱. این نتیجه براساس آزمون همگراپی یوهوشین - زوسیوس و براساس ۳ متغیر نماینده رشد اقتصادی و ۴ متغیر نماینده گسترش مالی نیز به دست آمده است. در این آزمون متغیر مجزای مربوط به تغییر ساختاری در نظر گرفته نشده است. نتایج در این مقاله گزارش نشده و در نزد نویسنده موجود می‌باشد.
با توجه به نتیجه به دست آمده از رابطه همگراپی بین متغیرهای مورد بررسی جدول ۱۴، نتایج آزمون گرنجر را نشان می‌دهد. طول بهینه وقفه در این آزمون‌ها براساس معیار حداقل خطای بیش‌بینی نهایی آکاییکی (FPI) تعیین شده است.

در جدول ۳ ملاحظه می‌گردد که فرضیه صفر گسترش مالی اعلای گرندشر رشد اقتصادی نیست. تنها زمانی رد می‌شود که از تعیین (G2:1) تولید ناخالص داخلی سرانه واقعی - به قیمت ناپایت (1341) برای رشد اقتصادی و تمام متغیرها و نماینده گسترش مالی استفاده می‌گردد. در سایر موارد فرضیه صفر مورد قبول قرار گرفته است. براساس جدول ۳ نیز می‌توان ملاحظه کرد که در تمام موارد فرضیه صفر رشد اقتصادی علت گرندشر گسترش مالی نیست. تأیید شده است.

علاوه بر معیار آماره (معیار کای مربع) برای محدودیت‌های صفر، از معیار خطای MWALD (معیار کای مربع) برای محدودیت‌های صفر، از معیار خطای

بیش‌بینی نهایی آکاییکی (FPI) نیز برای بورسی علیت استفاده می‌گردد. هر گاه باشد، این نتایج اشاره به این مطلب می‌کند که گسترش مالی علیه FPI(m4), t1 < FPI(m2) گرنجر رشد اقتصادی (یا برعکس) می‌باشد. با توجه به معیار (FPI) نیز مشاهده می‌گردد که گسترش مالی تنها زمانی علت گرندشر رشد اقتصادی است که می‌توان (F2:1) را به ترتیب برای رشد اقتصادی و گسترش مالی بیدر کرده و براساس این معیار رشد اقتصادی علت گرندشر گسترش مالی نیست.

نتایج به دست آمده موافق با نتیجه جانگ (1986) در مورد کشورهای در حال توسعه می‌باشد از فرضیه رشد به تبع عرضه در اقتصاد ایران حمایت می‌کند. بنابراین، ایجاد و گسترش مؤسسات های مالی جدید ایزاس مهمی برای انتباشت سرمایه، و در نهایت، رشد اقتصادی در اقتصاد ایران می‌باشد.

ذکر این نکته نیز ضروری است که چون اقتصاد ایران واپسینگم شديد به درآمد های نفتی دارد، عامل عمده علیه پیش سر توسعه مالی و اقتصادی ممکن است درآمد های نفتی باشد.
<table>
<thead>
<tr>
<th>پژوهش</th>
<th>تعداد</th>
<th>تعداد</th>
<th>فاصله</th>
<th>فاصله</th>
<th>فاصله</th>
<th>فاصله</th>
<th>فاصله</th>
<th>فاصله</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
<tr>
<td></td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
<td>107/0</td>
<td>0/0</td>
<td>1078</td>
</tr>
</tbody>
</table>

مرکز تحقیقات جامعی: درجه علمی کارکرد (H0) یا درجه علمی کارکرد (H0)
<table>
<thead>
<tr>
<th>MWAD</th>
<th>MWAD</th>
<th>FPE</th>
<th>FPE*(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/3</td>
<td>7/8</td>
<td>11/6</td>
<td>11/6</td>
</tr>
<tr>
<td>6/1</td>
<td>6/5</td>
<td>10/6</td>
<td>10/6</td>
</tr>
<tr>
<td>5/1</td>
<td>5/3</td>
<td>8/5</td>
<td>8/5</td>
</tr>
<tr>
<td>1/5</td>
<td>1/4</td>
<td>7/5</td>
<td>7/4</td>
</tr>
<tr>
<td>0/5</td>
<td>0/4</td>
<td>6/3</td>
<td>6/4</td>
</tr>
<tr>
<td>6/5</td>
<td>6/4</td>
<td>5/3</td>
<td>5/4</td>
</tr>
<tr>
<td>5/0</td>
<td>5/1</td>
<td>4/3</td>
<td>4/4</td>
</tr>
<tr>
<td>4/1</td>
<td>4/0</td>
<td>3/3</td>
<td>3/4</td>
</tr>
<tr>
<td>3/0</td>
<td>3/1</td>
<td>2/3</td>
<td>2/4</td>
</tr>
<tr>
<td>2/0</td>
<td>2/1</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td>1/0</td>
<td>1/1</td>
<td>0/3</td>
<td>0/4</td>
</tr>
</tbody>
</table>

Note: The table represents data or values related to MWAD, MWAD, FPE, and FPE*(%). The specific details or context of these values are not clear from the image.
نتیجه‌گیری و پیشنهادها

tا قبل از انتشار مقاله کارلی - شاو (۱۹۵۵) در متن توسعه اقتصادی به جنبه‌های واقعی توسعه اقتصادی اهمیت خاصی داده می‌شد. اما کارلی - شاو (۱۹۵۵) با برجست کمک‌های مالی توسعه اقتصادی به نقش رمزی مالی توسعه اقتصادی اشاره کرده و گسترش مالی را علت رشد اقتصادی معرفی کردن. پاتریک (۱۹۶۴) با مطرح کردن این پرسش که کدام بخش (مالی یا واقعی) منجر به فراگیری پویای توسعه اقتصادی می‌گردد، رابطه یکطرفه گسترش مالی و رشد اقتصادی را زیر سوال برده و زمینه‌ای برای مطالعات تجربی فراهم کرد. وی فرضیه‌های تأیین مالی به تبع عرضه (گسترش مالی عامل رشد اقتصادی است) و تأیین مالی متعاقب به تفاضل (رشد اقتصادی علت گسترش مالی است) را مطرح کرد.

ارزیابی تجربی این فرضیه‌ها در کشورهای در حال توسعه عمده‌ای از فرضیه رشد به تبع عرضه حمایت کرده است که می‌توان به مطالعه جانگ (۱۹۸۴) (در ۶۵ کشور که شامل ۳۷ کشور در حالت توسه و ۱۹ کشور صنعتی است) دارات (۱۹۶۴) (کشورهای ترکیه، عربستان سعودی، امارات متحده عربی) تورنتو (۱۹۶۶) (۲۷ کشور از آسیا، آمریکای لاتین، و حوزه کارائیب) و سایر مطالعات اشاره دارد.

در این مطالعه، با استفاده از آزمون‌های همگرایی یوهانسن - زولیوسوس و گریگوری - هندرس (۱۹۶۴) و آزمون عملی گرنجر، از فرضیه تأیین مالی به تبع عرضه تنها در کوتاه‌مدت و با پذیرشی متغیر تولید، ناکافی واقعی سرانه به قیمت ثابت (۱۳۶۱) به عنوان منتفی نمایندگی رشد اقتصادی حمایت شده است. این نتیجه، موفقیت با نتیجه‌ای اکثر مطالعات انجام یافته در کشورهای در حال توسعه است و پیشنهاد می‌کند که ایجاد و گسترش مؤسساتی مالی جدید، ابزار مهمی برای انبیاش سرمایه، و در نهایت، رشد اقتصادی در اقتصاد ایران است. سمید (۱۳۸۷) نیز پیشنهاد کرده است که آزادسازی مالی و انتخاب سکوپ مالی (یا هر کردن سقف نرخ بهره واقعی) در اقتصاد ایران به افزایش پس‌انداز و سرمایه‌گذاری، و در نهایت، رشد اقتصادی منجر خواهد شد.
پیوست: نحوه محاسبه آماره آزمون پیشنهادی گریگوری - هانسن

برای هر نقطه شکستگی (h)، یکی از الگوهای 2 نا 4 را با روش OLS (بسته به فرضیه رقیب) تخمین زده و جملات پسماند آن را \(e_{tb} \) محاسبه می‌کنیم. براساس این جملات پسماند ضریب هم یک یا دو مرجعه اول را به صورت زیر محاسبه می‌کنیم:

\[
\rho_{b} = \frac{\sum_{t=1}^{T-1} e_{tb} e_{t+1,b}}{\sum_{t=1}^{T-1} e_{tb}^2}
\]

با اصلاح از جملات پسماند، آماره آزمون فیلیپس (1987) را تغییر می‌دهیم. جملات پسماند مرحله دوم به صورت زیر قابل محاسبه است:

\[
v_{tb} = e_{tb} - \rho_{b} e_{t-1,b}
\]

این اصلاح همچنین شامل تخمین زیر از مجموع موزون خودکواریانس‌های است:

\[
\lambda_{b} = \frac{1}{M} \sum_{j=1}^{M} W(j)
\]

که در آن (Bandwidth) مقدار بهینه پارامتر \(M = M(T) \) و \(W(0) \) تابع وزن کرنش بهره‌ور کردن کمک به شیوه خاصی تعیین می‌گردد. برای تعیین طول بهینه پارامتر وقته برشی یا پارامتر Bandwidth، اندریزوس (1991) و اندریزوس و موناهان (1993) برآوردگر خودکار \(Bandwidth \) را به صورت زیر پیشنهاد کردند:

1. First Order Serial Correlation
2. اصطلال باندلینگ (Spectral Analysis) می‌باشد (آی و موسی، 1966).
3. Kernel Weight Function
4. Automatic Bandwidth Estimator

برای هر نقطه از فرم خاصی استفاده می‌شود که در اینجا از کرنش طفی درجه دوم استفاده شده است. برای مطالعه بیشتر نحوه تخمین این برآوردگر، واریانس بلندمدت و مسائل جنبی آنها، نگاه کنید به اندریزوس، 1991 و اندریزوس و موناهان (1993).
لگام مالی و رشد اقتصادی: آزمون‌های ریشه واحد...

\[
\hat{M}_h = 1.3221 \left[\hat{\alpha}(2) T \right]^{1/5}
\]

(13)

در این معادله (\(2\)) تابعی از تابع \(\hat{\alpha}(2)\) معلوم از \(\xi\) بوده و به صورت زیر قابل محاسبه است:

\[
G^{(2)} = \sum_{a=1}^{p} w_a \left(\frac{4 \hat{\rho}_a^2 \hat{\sigma}_a^4}{\left(1 - \hat{\rho}_a^2\right)^8} \right) \left(\frac{\hat{\sigma}_a}{\left(1 - \hat{\rho}_a^2\right)^4} \right) \sum_{a=1}^{p} w_a \left(\frac{\hat{\sigma}_a}{\left(1 - \hat{\rho}_a^2\right)^4} \right)
\]

(14)

در این رابطه \(\hat{\rho}_a\) و \(\hat{\sigma}_a\) به ترتیب پارامترهای اتورگرسیون و واریانس ابتدایی \(\omega\) و وزن می‌باشند. معمولاً پیشنهاد شده است که در معادلات رگرسیون برای پارامتر ثابت وزن صفر و برای بقیه متغیر وزن یک انتخاب گردد. پارامتر واریانس ابتدایی (\(\sigma^2\)) مجموع مربعات جملات خطای ناشی از رگرسیون زیر می‌باشد:

\[
y_t = \alpha + \delta t + \beta y_{t-1} + \xi_t
\]

(15)

در محاسبه تابع وزن کرمل نیز از کرمل‌های نرمال به صورت زیر استفاده می‌شود:

\[
\left(\frac{j}{M} \right) = \left(\frac{2\pi}{M} \right)^{-1} \exp \left[-\frac{1}{2} \left(\frac{j}{M} \right)^2 \right]
\]

(16)

در معادله (12) میزان (\(\sigma^2\)) به صورت زیر قابل محاسبه است:

1. Innovation Variance

\[\xi_t\] هنگامی که جملات خطای خود درست باشند، توزیع‌های آماره دیکی - فاول به طور مجانی تحت تأثیر قرار می‌گیرد و این وابستگی به دو پارامتر مزاحم (Nuisance Parameter) می‌باشد: واریانس ابتدایی (Long-run Variance) \(\sigma^2 = \lim T^{-1} \sum \xi_t^2\) و واریانس بلندمدت \(\sigma^2 = \lim T^{-1} \sum \xi_t^2\) \(\xi_t\) نیز مطابق معادله (11) قابل محاسبه است. برای مطالعه بیشتر، نگاه کنید به: لی و موسی، 1994.

براساس توضیحات بالا، تخمین ضریب همبستگی پیاپی مربوط به ارتباط صلاح سده به صورت زیر خواهد بود:

\[\hat{\gamma}_h(j) = \frac{1}{T} \sum_{t=1}^{T} \hat{V}_{t-h} \hat{V}_{t+h} \]

(17)

\[\hat{\rho}_h = \frac{\sum_{t=1}^{T-1} (\hat{e}_{t-h} \hat{e}_{t+1+h} - \hat{\lambda}_h)^2}{\sum_{t=1}^{T-1} \hat{e}_{t-h}^2} \]

(18)

آماره آزمون فیلپس را می‌توان به صورت زیر خلاصه کرد:

\[Z_{\alpha}(h) = T \left(\hat{\rho}_h - 1 \right) \]

(19)

\[Z_{i}(h) = \left(\hat{\rho}_h - 1 \right) / \hat{S}_h \]

(20)

\[\hat{S}_h^2 = \sigma_h^2 / \sum_{t=1}^{T-1} \hat{e}_{t-h}^2 \]

و اریانس بلندمدت \(\hat{\sigma}_h^2 \) است و به صورت زیر قابل محاسبه است:

\[\hat{\sigma}_h^2 = \hat{\gamma}_h(0) + 2 \hat{\lambda}_h \]

(21)

آماره دیگر، آماره ضریب \(\hat{c}_{(1,1)} \) در معادله رگرسیون زیرمی‌باشد که:

\[\hat{\Delta e}_{t+h} = \alpha + \beta \hat{e}_{t-1+h} + \gamma_1 \Delta \hat{e}_{t-1+h} + \ldots + \gamma_M \Delta \hat{e}_{t-M+h} + \xi_t \]

و بنابراین:

\[ADF(b) = t_{\text{آماره}} \left(\hat{e}_{t-1+h} \right) \]

(22)
گریگوری - هانسن بیان می‌کند که آمارهای آزمون (۱۹) (۲۰) ابزارهای متعارف برای تحلیل روابط همگرایی بدون حضور تغییر جهت ساختاری (تغییر رژیم) می‌باشد و آماره پیشنهادی آنها در حضور احتمال این تغییر جهت‌ها، کوچکترین مقادیر آمارهای (۱۹) (۲۰) (۲۲) در تمام نقاط ممکن. با استفاده از رابطه (۵) در متن آمده است.

