برآورد کشش‌های جزئی مستقیم و متقاطع آلن برای حاملهای انرژی در جمهوری اسلامی ایران، طی دوره ۱۳۶۵-۱۳۷۵

چکیده

مصرف حاملهای انرژی در جمهوری اسلامی ایران طی سه دهه گذشته (۱۳۶۶-۱۳۷۵) رشد سرمایه‌دارش به طوری که رشد آن بیش از ۲ برابر می‌باشد. رشد سالانه مصرف عمومی داخلی حاملهای انرژی است. در همین راستا، متغیرهای سطحی هیچ وقت و در اینم در قالب معادله‌های نقدی فناوری نهاده‌ها تولید به طور اعم و نیز حاملهای انرژی به طور اخص برای بخش‌های مختلف اقتصاد مورد مطالعه قرار گرفته و با توجه به تغییرات آنها بر سطوح نقدی حاملهای انرژی با بهره‌گیری از کشش‌های جانشین آن‌ها نیز به شکل است.

مقدمه

نهاده‌های تولید در چرخه فعالیت‌های اقتصادی به صورت مکمل و یا جایگزین برای تولید کالاها و خدمات مورد استفاده قرار می‌گیرند. نوسان‌های سطوح عرضه آنها بر روی نهاده‌های تولید بخش‌های مختلف اقتصاد را تحت تأثیر قرار می‌دهند. حاملهای انرژی نیز به عنوان یکی از نهاده‌های ثانویه در کنار

1. Allen Partial Elasticities of Substitution
بازار کشف‌های جزئی مستقیم و متقاطع آن برای...

دیگر عوامل اولیه (کار، سرمایه) در فرآیند تولید مورد استفاده قرار گرفته و نوسان‌های سطوح مصرفی آنها با توجه به نوع رابطه به نهاده‌های دیگر، در تعیین ظرفیت‌های تولید بخش‌های مختلف اقتصاد مؤثر می‌باشند.

متغیرهای قیمتی و درآمدی از مهم‌ترین عوامل مؤثر بر بازار نهاده‌های تولید به طور اعم و حاملهای انرژی به طور اخص بوده که الگوی تأثیرگذاری آنها بر تقاضای مصرفی حاملهای انرژی، محور این فرآیند مطالعاتی را تشکیل می‌دهد. شناخت متغیرهای مذکور از یک سو در تبیین وضعیت بازار حاملهای انرژی مؤثر بوده و از سوی دیگر، نحوه ارتباط میان بازار انرژی با بازار دیگر نهاده‌های تولید و رابطه آنها مورد بررسی می‌انجامد. در این پژوهش، روند تقاضای مصرفی حاملهای انرژی در بخش‌های مختلف تولیدی بررسی شده و نحوه تأثیرگذاری متغیرهای مؤثر بر روند مذکور تشخیص می‌گردد. این مجموعه، از شش بخش تشکیل می‌شود. در بخش نخست، روند مصرف حاملهای انرژی در جمهوری اسلامی ایران بررسی می‌شود و نوسان‌های دوره‌ای شدت آنها تحلیل می‌گردد. در بخش دوم، عوامل مؤثر بر روند مذکور بین بخش بزرگ در بخش سوم نیز الگوی تقاضای مصرفی حاملهای انرژی با استفاده از کشف‌های جانشینی آن برای بخش‌های مختلف اقتصاد ارائه می‌شود. در بخش چهارم، روش آزمون الگوی مذکور بررسی می‌شود. در بخش پنجم، نتایج حاصل از محاسبات کشف‌های جزئی مستقیم و متقاطع آن ارائه شده و مقداد ضریب‌ها و آماره‌های آزمون‌های هر یک از آنها تحلیل می‌گردد. در بخش پایانی نیز نتایج این پژوهش ارائه می‌شود.

1. تحلیل روند مصرف حاملهای انرژی

مصرف نهایی حاملهای انرژی طی سه دهه گذشته (1346-1375) رشد سریعی داشته و از 53/4 میلیون بشکه در سال 1346 با متوسط رشد 7/6 درصد به 98/8 میلیون بشکه معادل نفت خام در سال 1375 رسید. در دوره مشابه نیز تولید حاملهای انرژی، از 7/3 میلیون بشکه در سال 1346 به 1732 میلیون بشکه معادل نفت خام در سال 1375 رسیده که رشد محدود 1/2 درصدی داشته است. در تحلیل بلندمدت، رشد مصرف داخلی حاملهای انرژی بیش از چهار برابر رشد
ظرفیت‌های تولید آن می‌باشد. که از یک سو، یانگر همگراپی روند تولید و مصرف داخلی آن در یک دوره ۱۸ ساله بوده (با فرض حفظ ظرفیت‌های تولید موجود)، و از سوی دیگر، حاکی از کاهش ظرفیت‌های صادراتی کشور در دوره مذكور است.

۱- مصرف حاملهای انرژی در مقياس یکمی

مصرف حاملهای انرژی در بخش‌های خانگی و تجاری با شاخه‌های رفاهی و یکمی‌یی رابطه مستقیمی دارد و روند آن در طول سه دهه اخیر بالارفتن رشد را می‌یابد با توجه اقتصادی داشته است. مصرف حاملهای انرژی در این بخش در سال ۱۳۴۵ معادل ۲/۲ میلیون بشکه معادل نفت خام بوده که به متوسط رشد ۹/۶۰ درصد به ترتیب، در سال‌های ۱۳۴۶-۱۳۵۵ و ۱۳۵۵-۱۳۶۰ به ۴ میلیون و ۱۲۷۰۰ به ۴/۱۱ میلیون بشکه معادل نفت خام رسد. در طول دوره ۱۳۷۵-۱۳۸۰ نیز این روند رشد ادامه داشت و به متوسط ۴/۸ درصد زیمین مصرف انرژی یی که به ۱۹ میلیون بشکه معادل نفت خام را می‌نمود. مصرف سرانه حاملهای انرژی در طول دوره مطالعاتی نیز رشد ثابت داشت و به ۲/۹ بشکه معادل نفت خام در سال ۱۳۴۵ به ترتیب، به ۵/۱۹ و ۱/۷/۱۳۵ و ۱۳۸۵ به حاکی از متوسط رشد ۷ و ۴/۵ درصدی مصرف سرانه می‌باشد.

۱- مصرف حاملهای انرژی در مقياس تولید

پرآورده کشف‌های جزئی مستقیم و متقاطع آلن برای...

۲۴ هزار ریال تقلیل یافت، و در نهایت، در سال ۱۳۷۵ به حداقل مقدار ۲۲ هزار ریال رسید. در همین دوره، به واسطه افزایش مصرف حاملهای انرژی در فرآیند تولید شاخص شدت انرژی نیز افزایش یافت و متقادیر انرژی مصرفی برای تولید هر واحد افزوده اضافی رشد داشته است. در سال ۱۳۴۷ شدت انرژی برای کل اقتصاد (بدون احتساب بخش نفت) معادل ۰/۲۵ بوده که پس از یک دوره کاهش به ۰/۱۸ در سال ۱۳۵۵، در نهایت، به ۰/۰۷ و ۰/۵۷ در سال‌های ۱۳۶۰ و ۱۳۷۵ رسید، از سوی دیگر، در تحلیل بنا به نیاز مصرفی حاملهای انرژی توسط بخش‌های مختلف تولید برای خلق هر یک میلیون ریال افزوده اضافی از ۲۵ بشکه معادل نفت خام در سال ۱۳۴۷ با متوسط رشد ۷/۳ درصد به ۶۷ بشکه معادل نفت خام در سال ۱۳۷۵ رسید.

۲. متغیرهای مؤثر بر بازار انرژی

در قسمت قبل، روند مصرف حاملهای انرژی در مقایسه با شخصیت‌های جمعیتی، تولیدی و بررسی شد و فراپیدبند پرشتاب آن در قابلیت رشد شخصیت آن در اقتصاد و افزایش مصرف سرشار تحلیل گردیده. در این بخش نیز عوامل مؤثر بر شکل‌گیری روند فوق تبیین می‌گردند.

۳.۱. افزوده افزوده

ظرفیت‌های تولید، یکی از عوامل مؤثر بر فراپیدبند مصرف نهاده‌های اولیه به طور اعم و حاملهای انرژی به طور اخص (به عنوان نهاده ثانویه) بوده که نوسان‌های آن در بخش‌های مختلف اقتصاد سطح تقاضای انرژی را متأثر می‌سازد. افزایش تولید در هر یک از بخش‌های اقتصاد اثرهای مستقیم و غیرمستقیم گسترش‌دهنده بر بازار حاملهای انرژی داشته (غير مناسب)، اثرهای مستقیم مذکور نیاز به نهاده انرژی را در فراپیدبند تولید افزایش داده (مطلب نمودار ۱) و اثرهای غیرمستقیم آن نیز از طریق انتقال افزوده خلق شده (قدرت خرد تزریقی به جامعه از طریق مهم درآمدی ۱).

1. Energy Intensity

۲. اثرهای غیرمستقیم مذکور با روابط بین بخشی که در ماتریس ضریب‌های معکوس لیفتوانیف تبیین شده، متفاوت می‌باشد.
صاحبان نهاده‌های تولید بر مصرف انرژی خانوارها و تضایای مشتق شده در بخش‌های دیگر منعكس می‌گردد. مطابق نمودار ۱، روند محصول ناخالص داخلی (بدون احتساب بخش نفت) همسو با نوسانهای مصرف حامله‌ای انرژی بوته (با درجه همگنی دو)، که بخشی از نوسانهای تضایای مصرفی آن را تبیین می‌نماید.

نمودار ۱. روند مصرف انرژی و محصول ناخالص داخلی (بدون بخش نفت)

۲-۲. قیمت‌های نسبی

تعادل مصرفی در بازار نهاده‌ها بر اساس برآری ارزش تولیدنهای عوامل تولید تمیز می‌گردد. نوسانهای قیمت هر یک از نهاده‌ها نیازی از طریق تطبیق در سطوح قیمت‌های نسبی، به نسبت بازار آن نهاده خاص، بلکه بر بازار تمام عوامل تولید اثر می‌گذارد و حتی زمینه‌ی جایی جای آنها را در تعادل مالی می‌سازد. نمودار ۲ نسبت شاخص قیمت انرژی را به ازای شاخص قیمت سرمایه‌گذاری و شاخص دستمزد طی سال‌های ۳۷ اخیر نشان می‌دهد. مطابق نمودار مذکور، در طول دوره مطالعاتی نسبت‌های فوق به طور متوسط، ۴/۸ درصد کاهش داشته که در کوتاه مدت و بلندمدت زمینه جایگزین انرژی را به جای نهاده‌های متغیر (کار) و ثابت تولید (سرمایه) می‌های
نمودار ۲. نسبت شاخص قیمت انرژی به‌ازای شاخص قیمت سرمایه‌گذاری و شاخص دستمزد

۳. مدل تفاضل حامله‌ای انرژی

در بخش قبلی، متغیرهای درآمدی و قیمتی مؤثر بر بازار نهاده‌های تولید به طور اجمالی و بازار حامله‌ای انرژی به طور احساسی بررسی گردید و بازار نوسان‌های آنها بر ترکیب هزینه‌ای و نوع فن‌آوری تولید تابع گردید. مطابق مطالب مذکور، تغییرات قیمت‌های نسبی نهاده‌ها و نیز سطح تولید بخش‌های مختلف اقتصاد در کوتاه‌مدت و میان‌مدت مستقیماً بر روند مصرف حامله‌ای انرژی اثر گذاشته که تبیین فرایند مذکور مستلزم استفاده از گروه‌ها تحلیل تفاوت‌ها می‌باشد. در میان گروه‌های مختلف اقتصادی که عمدتاً به مشتریان کلی بوده، ماده‌های تفاوتی آن (کشش‌های جزئی جوانشی) به واسطه انتقال به سه‌تایی بنفشه متفاوت و متفاوت در کوتاه‌مدت و به علت بررسی تعادل هم‌بازاری نهاده‌های تولید، از اهمیت ویژه‌ای برخوردار
3-1. کشش‌های جزئی آلن

سطح تفاوت‌های حامل‌های انرژی در بخش‌های مختلف اقتصاد منف importer از متغیرهای قیمتی و درآمدی
تأثیرگذار بر آنها بوده که با تغییر ترکیب نهاده‌های تولید و سهم هزینه‌های آنها، بر بازار حامل‌های
انرژی اثر می‌گذارند. کشش‌های جزئی جانشینی آلن نحوه تأثیرگذاری متغیرهای مذکور را تبیین
می‌نماید. برای محاسبه کشش‌های مذکور تابع تولید (1) رابطه (3-1) بر حسب نهاده‌های کار،
سرماهه و انرژی اوله ارائه می‌گردد.

\[Y = A \left[\alpha_1 X_1^{-\delta} + \alpha_2 X_2^{-\delta} + \alpha_3 X_3^{-\delta} \right] \frac{(\beta/\delta)} \] (1-2)

مشکل غیرخطی معادله فوق ضرورت تبدیل خطی آن را برای تحقیق آسانتر هدف‌های مذکور
اجتناب ناپیش‌گر می‌سازد. بدین روش، لگاریتم طبیعی معادله (3-1) گرفته شده و سپس حول نقطه
\[\delta = 0 \] (درجه جایگذاری نهاده‌های تولید) بسط داده می‌شود. تابع حاصل از بسط رابطه مذکور،
تابع تولید ترانسلوگ ۱ را ارائه می‌نماید (3-2).

\[\ln Y = \ln A + \sum \epsilon_i \ln X_i + \frac{1}{2} \sum \epsilon_{ij} \ln X_i \ln X_j \] (2-3)

\[i, j = 1, 2, 3 \]

تابع هزینه‌هیزدوج (فصل دوگانگی) رابطه (3-2) نیز به منظور محاسبه توابع تفاوتی هر
یک از نهادها می‌باشد محاسبه شده تا با استفاده از شیاره، ۵ یادگیری برآورد معادله‌های تفاوتی
نیروی کار، سرمایه و انرژی بر حسب قيمت نهاده‌ها و سطح تولید در معادله (3-2) می‌گردد.

\[\ln C = \ln A + \varphi_0 \ln Y + \sum \varphi_i \ln P_i + \frac{1}{2} \sum \varphi_{ij} \ln P_i \ln P_j \] (3-3)

1. Constant Elasticities of Substitution
2. Translog Production Function
3. 3. اثبات این رابطه در پیوست الف آمده است.
4. Duality Theorem
5. Shephard Lemma
تایب هزینه مذكور از یک سو نسبت به قیمت نهاده‌ها همگن خطي بوده، و از سوی دیگر، از
بازدهی ثابت به مقياس و تقارن برخورد دار می‌باشد. این شرایط محدودیت‌های خطي مختلفی را در
فراپند تخمین ضریب‌های معادله‌های تایب هزینه ایجاد می‌نماید.

\[
\varphi_1 + \varphi_2 + \varphi_3 = 1
\]

\[
\varphi_{11} + \varphi_{12} + \varphi_{13} = 0 \quad \Rightarrow \quad \varphi_{11} = -\varphi_{12} - \varphi_{13}
\]

\[
\varphi_{21} + \varphi_{22} + \varphi_{23} = 0 \quad \Rightarrow \quad \varphi_{21} = -\varphi_{22} - \varphi_{23}
\]

\[
\varphi_{31} + \varphi_{32} + \varphi_{33} = 0 \quad \Rightarrow \quad \varphi_{31} = -\varphi_{32} - \varphi_{33}
\]

معادله‌های یکنگار شرایط بازدهی ثابت در تایب تولید بوده که در آن ارزش
افزوده تولید بخش‌های مختلفی به نسبت سهم هزینه‌ها نهاده‌ها بین آنها تقسیم می‌گردد. معادله‌های
دوم تا چهارم نیز بر اساس قضیه یانگ یک برای تابع پیوسته به طور اعم و تایب هزینه توانسلوگ
(3-2) به طور اختیاری برقرار می‌باشد (تغییرات سطوح تحسیب‌های هر نهاده با نوسان‌های تغییرات
دیگر عوامل تولید در کوتاه‌مدت یکسان می‌باشند). محدودیت‌های فوق در فراپند تخمین ضریب‌ها و
پارامترهای تابع تغییرات عوامل تولید مستقیماً تاثیرگذار بوده و مشکل هم‌عنوانی میان معادله‌های
تغییرات نهادها را مرتفع می‌سازد.

رابطه (3-5) مشتق جزئی تایب هزینه مزدوج را بر حسب متغیر‌های مستقل آن ارائه کرده (لم
شبارو) و توابع تغییرات عوامل تولید نیز در شکل لگاریتمی آن به صورت معادله (3-6) تبین
می‌گردد. جایگزینی کسر اول معادله (3-6) توسط معادله تغییرات نهادها (3-5) عملاً رابطه
(3-7) را بر حسب سهم هزینه‌ای عوامل تولید ارائه می‌نماید.

\[
X_i = \frac{\Delta C}{\Delta P_i}
\]

\[
C_i = \frac{\Delta (\ln C)}{\Delta (\ln P_i)} = \frac{dC}{dP_i} \frac{P_i}{C} = \frac{P_i X_i}{C}
\]

\[
S_i = X_i P_i / C = \varphi_i + \sum \varphi_{ij} \ln P_j
\]

مطابق رابطه مذكور سهم هزینه‌ای \(S_i \) هر یک از نهاده‌های تولید تابعی از قیمت تمام عوامل

1. Youngs Theorem
تولید می‌باشد. معادله‌های (3-2) توابع مربوط به سهم هزینه‌های نهاده‌های کار، سرمایه‌ه و انرژی را ارائه کرده که شکل تفصیلی معادله (3-2) می‌باشد.

\[
S_1 = \varphi_1 + \varphi_{11} \ln P_1 + \varphi_{12} \ln P_2 + \varphi_{13} \ln P_3 \\
S_2 = \varphi_2 + \varphi_{21} \ln P_1 + \varphi_{22} \ln P_2 + \varphi_{23} \ln P_3 \\
S_3 = \varphi_3 + \varphi_{31} \ln P_1 + \varphi_{32} \ln P_2 + \varphi_{33} \ln P_3
\]

(8-3)

همگرایی میان ضریب‌های معادله‌های مذکور با توجه به معادله‌های (3-2)، نتایج حاصل از تخمین ضریب‌ها و پارامترهای معادله‌های (3-2) را تورش دار نموده که پس از اعمال محدودیت‌های خط‌ی مربوط، زمینه برآورد ضریب‌های بدون تورش برای معادله‌های هم‌زنمان (3-2) در قالب سیستم معادله‌های جدید (3-2) می‌گردند.

\[
S_1 = \varphi_1 + \varphi_{11} \ln \left(\frac{P_1}{P_2} \right) + \varphi_{13} \ln \left(\frac{P_3}{P_2} \right) \\
S_2 = \varphi_2 + \varphi_{21} \ln \left(\frac{P_1}{P_2} \right) + \varphi_{23} \ln \left(\frac{P_3}{P_2} \right) \\
S_3 = \varphi_3 + \varphi_{31} \ln \left(\frac{P_1}{P_2} \right) + \varphi_{33} \ln \left(\frac{P_3}{P_2} \right)
\]

(9-3)

سیستم معادله‌های هم‌زنمان فوق براساس قیمت‌های نسبی نهاده‌ها (نسبت به قیمت سرمایه) قابل تخمین بوده و ضریب‌های حاصل از آن به منظور محاسبه کشش‌های مستقیم و متقاطع جانشینی آلی به کار می‌رود. ضریب‌های مذکور در صورتی مورد استفاده هستند، در تحلیل حساسیت تفاوت‌های مصرفی نهاده‌های اولیه و حامل‌های انرژی به ارزیابی سطوح قیمت‌های نسبی مورد استفاده قرار می‌گیرند. معادله‌های (3-2) تا (3-12) نحوه محاسبه کشش‌های مستقیم و متقاطع جانشینی آلی را در کوتاه‌مدت (به صورت نقطه‌ای) ارائه می‌نمایند.

\[
C_i = \frac{\Delta C}{\Delta P_i} = S_i
\]

(10-3)

\[
C_{ij} = \frac{\Delta^2 C}{\Delta P_i \Delta P_j}
\]

(11-3)

\[
\sigma_{ij} = \frac{C_{ij}}{C_i C_j}
\]

(12-3)

مطابق روابط مذکور، معادله‌های (3-2) و (3-11) مشتق‌های اول و دوم تابع هزینه را بر حسب قیمت نهاده‌های تولید ارائه کرده، که پس از جایگذاری در معادله (3-12) مقداری
کشش‌های جانشینی جزئی آنل (\(\sigma_{ij}\)) را محاسبه می‌نماید. ۱. جایگذاری معادله‌های (۰-۳) و (۰-۱) در معادله (۱۲-۳) روابط (۰-۳) و (۰-۱) و را که مقداری کشش‌های جزئی مستقل و متغیر آن بوده با هر سال ارائه می‌نماید. ۱. معادله‌های زیر تبدیل پارامتریک معادله (۱۲-۳) بر حسب قیمت‌ها می‌باشد.

\[
\sigma_{ij} = \frac{(B_{ij} + S_i^2 - S_i)}{S_i^2}
\]

\(i = j\)

\[
\sigma_{ij} = \frac{(B_{ij} + S_i S_j)}{S_j S_i}
\]

\(i \neq j\)

\[
E_{ij} = \sigma_{ij} S_j
\]

مطابق روابط فوق، مقدار کشش‌های جزئی آنل در طول زمان بر حسب تغییرات سهم هزینه‌ای نهاد‌های تولید تغییر یافته و با گزارش فن آوری تولید هر یک از بخش‌های اقتصاد به مصرف یک نهاده خاک سالم کشش آن افزایش می‌یابد.

آنل در سال ۱۳۸۸، رابطه میان کشش‌های قیمتی تقاضا و کشش‌های جانشینی جزئی نهاده‌های تولید را ارائه کرده (۰-۵) که در آن کشش‌های قیمتی تقاضا عوامل (تغییرات مقداری تغییرات) مصرفی به ارزیابی نوسان‌های قیمتی نسبی نهاده‌های تولید (در مقابل تغییرات کشش‌های جزئی) تغییرات سهم هزینه‌های هر یک از عوامل تولید به ارزیابی تغییرات قیمتی نسبی نهاده‌های) تغییر می‌یابد. ۲. به یافتن دیگر، تغییرات سهم هزینه‌های نهاده‌های تولید مستقیماً کشش‌های جانشینی جزئی و مقدار کشش‌های قیمتی عوامل تولید را متأثر می‌سازد. کشش قیمتی حاصله همان کشش نقطه‌ای نهاده‌ها در کوتاه‌مدت بوده که حساسیت سطوح تقاضا را به ارزیابی نوسان‌های قیمتی نسبی تبیین می‌نماید.
3. روش آزمون مدل
روش تخمین ضریب‌ها و پارامترهای معادله‌ها (3-1) از طریق آزمون سیستم معادله‌های هم‌زمان
سهم هزینه‌های نهاده‌های کار، سرمایه و انرژی اولویت می‌باشد. رابطه متقابل میان سهم هزینه‌ای
نهاده‌های تولید با متغیرهای مستقل (قیمت‌های نسبی)، عملکرد استقلال بین جملات اخلال و
متغیرهای توضیحی هر یک از معادله‌های را از میان برده و سپر تخمین ضریب‌ها و پارامترهای
تورش دار و ناساژگار می‌شود.
برای رفع این مشکل روش (1) می‌توان استقلال متغیرهای توضیحی را از نوسان‌های
جملات اخلال می‌باشد. متغیرهای ابزاری معادله‌های قیف که به صورت قیمت‌های نسبی ارائه
شده، مقادیر شاخص قیمت‌های کار، سرمایه و حاصله‌ای انرژی می‌باشدند که پس از تخمین ضریب‌های
مربوط به آنها، نوع رابطه تکمیلی یا جابجایی میان نهاده‌ها تعیین می‌گردد. ضریب‌های حاصل از
آزمون معادله‌های (3-1) در صورت تأیید درجه اعتبار آنها در روابط (3-1) و (3-2) قرار
گرفته و زمینه محاسبه کشش‌های مستقیم و متقاطع جزئی آن را برای هر سال می‌باشد.
کشش‌های نقطه‌ای حاصله از یک سو، روابط میان نهاده‌های کار، سرمایه و انرژی را بیان نموده و
از مسی دیگر، حساسیت سطوح تغییرات عوامل تولید را به ارزی تغییرات قیمت‌های نسبی تعیین
می‌نماید. تغییرات روند کشش‌های حاصله (در طول دوره مطالعاتی 1375-1376) در کوتاه‌مدت
یا انگار فرآیند جابجایی میان هزینه‌های انرژی با دیگر هزینه‌های متغیر تولید (به صورت تغییر در
سهم هزینه‌های انرژی) بوده و در بلندمدت نیز حاکی از جابجایی میان هزینه‌های انرژی با
هزینه‌های ثابت تولید می‌باشد. افزایش دوره‌ای سهم هزینه‌های هریک از نهاده‌های فوق از یک
سو، گراشتن آن‌ها تولید را به یا جابجایی آن نهاده نشان داده، و از مسی دیگر، مزیت قیمت‌های آن
را تأیید می‌نماید.

اطلاعات مورد استفاده در فرآیند محاسبه کشش‌های جزئی آن در این پژوهش براساس آمار
حساسیت ملی جمهوری اسلامی ایران طی دوره 1375-1376 تهیه شده که بر حسب قیمت‌های
پایه سال 1375 توزیع گردیده و در سرمایه‌های فوق به همراه نهاده‌های تولید نیز به

1. Two Stage Least Square
روش‌هایی که در ادامه مورد بررسی قرار گرفته، محاسبه می‌شوند.

۲-۴. سهم هزینه‌های نهاده‌های اولیه

نهاده‌های کار و سرمایه اجزای درآمدی ارزش‌افزوده را تشکیل داده که به نسبت متفاوت در مناطق حاصل از آن سهم می‌باشند. سهم درآمدی هر یک از عوامل مذکور در طول دوره مطالعاتی به مقادیر ارزش‌افزوده نهایی آنها بستگی داشته، که برای تعیین مقادیر آن از دو روش تولید با

پژوهشی ثابت (کتاب‌‌داده‌گذاری) و روش تابع سرمایه‌گذاری استفاده گردید. در روش نخست، به

علت رد فرضیه بازدهی ثابت نسبت به مقياس در بخش‌های تولید، برآورد سهم هزینه‌های هر یک از

نهاده‌ها امکان‌پذیر نیست. در روش دوم نیز با استفاده از تابع سرمایه‌گذاری و نرخ بازدهی آن زمینه

محاسبه مقادیر سهم هزینه‌های عوامل تولید می‌گردد. رابطه (۴) معادله سنتی تابع

سرمایه‌گذاری را ارائه کرده و پارامتر ثابت آن نیز (عرض از مبدا) با یک چاکلست در مورد

سرمایه‌گذاری اقتصاد در نرخ بازدهی صفر می‌باشد. اگر حداقل توان سرمایه‌گذاری اقتصاد

یک سوم فرضیه‌های تولید فرضی گردند، آن گاه نسبت تفاضل توان سرمایه‌گذاری بالقوه از مقادیر

واقی قانون به ضریب ثابت سرمایه‌گذاری، نرخ بازدهی آن را ارائه می‌نماید (معادله دوم).

دیفرانسیل لگاریتم طبیعی معادله دوم، برای نرخ رشد بازدهی سرمایه به ازای نرخ رشد تفاضل

سرمایه‌گذاری بالقوه از سرمایه‌گذاری واقعی را ارائه می‌نماید (معادله چهارم).

\[
I=10-a.r
\]

\[
r=(10-I)/a
\]

\[
z=10-I \quad d(Ln a) = 0
\]

\[
d(Ln z) = d(L.n r)
\]

مطابق رابطه فوق، اگر نرخ بازدهی سرمایه در سال ۱۳۶۳ که بالاترین نسبت سرمایه‌گذاری به

محصول ناخالص داخلی را داشته (به قیمت‌های ثابت ۱۳۶۱)، ۳ درصد (حداقل) فرض گردد،

عملیاً زمینه تریلی آن برای دوره ۱۳۷۵-۱۳۸۸ با نرخ‌های رشد حاصل از معادله چهارم (۴-1)

می‌باشد. بهینه تریلی، نرخ بازدهی سرمایه برای طول دوره مطالعاتی محاسبه می‌شود. پس از
مطالعاتی محسوب می‌گردد.

2-۴. سهم هزینه‌ای انرژی

احتمال‌های انرژی از عوامل ثابت‌های تولید بوده که اگرچه در محاسبه ارزش تولیدات به‌شکل مختلف اقتصاد تأثیر داشته، اما در تعیین ارزش افزوده نقش ندارند، اما در روی، محاسبه‌ی سهم هزینه‌ای آنها در فراشبند تولید می‌باشد از طریق معادله (۴-۳) انجام پذیرد.

\[m = \frac{En_{\text{Exp}}}{(En_{\text{Exp}} + VA)} \]

مطالب رابطه مذکور، سهم هزینه‌ای حامل‌های انرژی از طریق نسبت هزینه آن به حاصل جمع ارزش افزوده کل با هزینه انرژی محاسبه می‌گردد.

5. نتایج آزمون مدل

آزمون سیستم معادله‌های همزمان روابط (۴-۳) با استفاده از روش SLS از یک سو زمینه محاسبه‌کرده و نیز کشتهای قیمتی نهاده‌های تولید را می‌تواند، و از سوی دیگر، نوع رابطه جانشینی تاکمیلی عوامل تولید را تعیین می‌نماید. جدول ۱ ضریب‌های معادله‌ها آماره آزمون نقطه‌ای (۴) و نیز مقادیر ضریب تعیین هر یک از معادله‌ها را ارائه می‌نماید.
جدول ۱. ضریب‌ها، آماره‌های آزمون سیستم معادله‌های تقاضای نهاده‌های تولید

<table>
<thead>
<tr>
<th>ضریب تیکه</th>
<th>آماره (0)</th>
<th>مقدار تخمین</th>
<th>پارامتر</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/85</td>
<td>103/2</td>
<td>0/87</td>
<td>ϕ_1</td>
</tr>
<tr>
<td>0/88</td>
<td>13/8</td>
<td>0/11</td>
<td>ϕ_2</td>
</tr>
<tr>
<td>0/93</td>
<td>19/0</td>
<td>0/02</td>
<td>ϕ_3</td>
</tr>
<tr>
<td></td>
<td>-9/0</td>
<td>-0/16</td>
<td>ϕ_{11}</td>
</tr>
<tr>
<td>-7/9</td>
<td>-0/05</td>
<td>-0/02</td>
<td>ϕ_{13}</td>
</tr>
<tr>
<td>-21/6</td>
<td>-0/02</td>
<td>-0/14</td>
<td>ϕ_{21}</td>
</tr>
<tr>
<td>7/8</td>
<td>0/07</td>
<td></td>
<td>ϕ_{23}</td>
</tr>
<tr>
<td>10/3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مطابق جدول ۱، تمام ضریب‌های تیکه در سطوح اطمینان ۹۹ درصد مبنای بوده و آماره (0) و متغیرهای مستقل (قیمت‌های نسبی) معادله‌های تقاضای نهاده‌های کار، سرمایه و انرژی قابلیت توضیح نوسان‌های متغیرهای وابسته خود را به ترتیب به مقدار ۷۵ و ۹۳ درصد خواهند داشت.

جدول ۲. مقدار کششی جزئی آن برای نهاده‌های تولید

<table>
<thead>
<tr>
<th>کشش جزئی</th>
<th>۱۳۷۵</th>
<th>۱۳۷۰</th>
<th>۱۳۶۵</th>
<th>۱۳۵۷</th>
<th>۱۳۴۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_{11}</td>
<td>0/43</td>
<td>-0/75</td>
<td>0/42</td>
<td>-0/40</td>
<td>0/91</td>
</tr>
<tr>
<td>σ_{13}</td>
<td>-0/38</td>
<td>1/1</td>
<td>-2/2</td>
<td>4/1</td>
<td>-13/4</td>
</tr>
<tr>
<td>σ_{33}</td>
<td>25/3</td>
<td>45/0</td>
<td>83/3</td>
<td>174/2</td>
<td>537/9</td>
</tr>
<tr>
<td>σ_{21}</td>
<td>1/4</td>
<td>2/2</td>
<td>1/2</td>
<td>2/2</td>
<td>1/5</td>
</tr>
<tr>
<td>σ_{23}</td>
<td>14/0</td>
<td>17/2</td>
<td>25/8</td>
<td>44/4</td>
<td>37/1</td>
</tr>
<tr>
<td>σ_{22}</td>
<td>-23/5</td>
<td>15/8</td>
<td>-17/1</td>
<td>-17/9</td>
<td>-3/78</td>
</tr>
</tbody>
</table>
مطابق جدول ۲، در طول مقاطع زمانی تنپیرات سهم هزینه‌های نهاده‌های تولید روند کم‌کمی و مستقیم و مقاطع را متأثر نموده، به طوری که کاهش قیمت‌های نسبی هر یک از عوامل تولید در کوتاه‌مدت نوسانهای قیمتی بزرگتری را به‌ازای نوسان‌های مقداری سطوح تقاضا ایجاد نموده، و از یک سو، زمینه کاهش سهم هزینه‌های، و از سوی دیگر، افزایش مقادیر کشته‌های مستقیم را می‌ساختم است. طبق اطلاعات متعدد در جدول ۲، افزایش تدریجی سهم هزینه‌های حامله‌ای انرژی و سرمایه در طول زمان زمینه‌های گام‌گذاری کوتاه‌مدت آنها را محدود نموده و کوشش بیشتری آنها را به ازای نوسان‌های قیمت‌های نسبی کاهش داده است. به طوری که مقادیر کشته‌های قیمتی حامله‌ای انرژی و سرمایه، به ترتیب، از ٦٣۷۹/٥۹ و ٦٣۷۹/٥١ در سال ۱۳۴۶-۱ و ٦٣۷٩/۴۲-۴ در سال ۱۳۷۴-۴۳-۱۳ و ۱۳۷۵ رسید. از سوی دیگر، کاهش نسبی سهم هزینه‌های نیروی کار در فراوان تولید به علت افزایش نسبت شاخص دستمزد به ازای شاخص قیمت سرمایه و حامله‌ای انرژی در طول زمان زمینه گام‌گذاری نیروی کار با نهاده‌های دیگر را می‌ساختم و مقادیر کشته‌های آن را از ۷۸/۳۷-۳-۷۸ در سال ۱۳۷۴ به ۸۴-۹۲-۴۳ در سال ۱۳۷۵ رسید.

مطابق نتایج به دست آمده، رابطه میان نهاده‌های کار-سرمایه و کار-انرژی از نوع جانشینی و رابطه میان سرمایه-انرژی از نوع تکمیل بوده است. سهم محدود حامله‌ای انرژی در مقابل سهم هزینه‌های بالای سرمایه در طی زمان، زمینه مساعده‌ای را برای جانشینی بین نیروی کار و حامله‌ای انرژی نسبت به سرمایه و انرژی به وجود آورده است، بدین روش همبستگی گسترده‌ای میان نیروی کار و حامله‌ای انرژی (۱۶) بوجود آورده است که از کشته‌های مذکور بین کار و سرمایه (۲/۴) می‌باشد.

کشته‌های قیمتی نهاده‌های تولید مطابق رابطه (۲-۳) حاکی از حساسیت تقاضا عوامل تولید به ازای تغییرات سطوح قیمت‌های نسبی می‌باشد. مطابق جدول ۲، در میان نهاده‌های تولید، نیروی کار (۷/۲-۶ و سرمایه (۳۶/۵-۰) به ترتیب، بیشترین و کمترین مقادیر تأثیر پذیری را به ازای نوسان‌های سطوح قیمت‌های نسبی در سال ۱۳۷۵ داشته‌اند. نتایج حاصل از محاسبه کشته‌های متقابل نیز حاکی از قابلیت گام‌گذاری بالا میان نیروی کار و سرمایه‌های آن می‌باشد.
جدول ۲. کوئیمیتی نهاده‌های تولید

<table>
<thead>
<tr>
<th>کوئیمیتی جزئی</th>
<th>۱۳۷۵</th>
<th>۱۳۷۰</th>
<th>۱۳۶۵</th>
<th>۱۳۶۷</th>
<th>۱۳۵۷</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱/۲۳</td>
<td>-۲/۷</td>
<td>-۲/۴</td>
<td>-۲/۴</td>
<td>-۲/۴</td>
<td>-۱/۲</td>
</tr>
<tr>
<td>۱/۳</td>
<td>-۱/۳</td>
<td>-۱/۵</td>
<td>-۱/۸</td>
<td>-۲/۳</td>
<td>-۲/۹</td>
</tr>
<tr>
<td>۰/۲۱</td>
<td>۰/۲۸</td>
<td>۰/۲۵</td>
<td>۰/۲۴</td>
<td>۰/۲۶</td>
<td>۰/۲۸</td>
</tr>
<tr>
<td>۰/۰۲</td>
<td>-۰/۰۴</td>
<td>-۰/۰۵</td>
<td>-۰/۰۵</td>
<td>-۰/۰۵</td>
<td>-۰/۰۸</td>
</tr>
<tr>
<td>۰/۰۰</td>
<td>۱/۰</td>
<td>۱/۸</td>
<td>۱/۸</td>
<td>۱/۹</td>
<td>۱/۹</td>
</tr>
<tr>
<td>۰/۶۹</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۰/۵۵</td>
<td>۰/۲۲</td>
</tr>
</tbody>
</table>

۵. نتیجه‌گیری

نوسان‌های قیمت‌های نسبی نهاده‌های تولید ترکیب هزینه‌ای و نوع فن آوری تولید در بخش‌های مختلف اقتصاد را در کوئیمیت‌های و میان‌مدت متاثر می‌سازد. میزان تاثیر گذاری نوسان‌های قیمت‌های فوق بر روند تخصیص منابع بخش‌های مختلف اقتصاد، از یک سو به رابطه میان عوامل تولید (جانشینی و مکملی)، و از سوی دیگر به حساسیت آنها در مقابل تغییرات قیمتهای نسبی است. در تحلیل کوئیمیتی جزئی آن نهاده‌های کار - سرمایه و کار - انرژی به‌ترتیب با مقدار کوئیمیتی جاگرژیتی۲ و ۰/۹ رابطه جانشینی به‌کمک دو نسبت به یکدیگر داشته و نهاده‌های انرژی - سرمایه رابطه تکمیلی (۰/۰۰) با یکدیگر دارند. سهم هزینه‌های هر یک از عوامل تولید در طی زمان از مغز‌های مؤثر بر روند تعیین کوئیمیتی نهاده‌ها می‌باشد. تغییرات صعودی سهم هزینه‌های هر یک از عوامل تولید مقصد شاخ شد مصرفی آن نهاده را به ازای یک واحد تولید جدید افزایش داده و در نتیجه، کوئیمیتی نهاده‌های بین‌المللی آن در مقابل نوسان‌های قیمتهای نسبی کاهش می‌دهد. به طوری که مقادیر کوئیمیتی حامل‌های انرژی و سرمایه به ترتیب از ۱/۰۰ به ۲/۹۰ در سال ۱۳۷۹ در رشته و حرکت، مقادیر نمک‌پوش برای نیروی کار از ۲/۱ به ۷/۱ رشد دارد.
منابع
الف) فارسی
یانک مرکزی جمهوری اسلامی ایران. (1376). شاخص قیمت عمده‌فرشی تولیدات.
1338-1375. اداره آمار اقتصادی.
سازمان برنامه و بودجه. (1376). مجموعه سری زمانی آمارهای اقتصادی-اجتماعی.
طیبیان، محمد. (1364). تخمین معادلات تفاضلی برای نهادهای صنعت برق ایران. مدیریت انرژی سازمان برنامه و بودجه.

ب) انگلیسی
پیوست ألف

\[Y = A \left[\alpha_1 X_1^{-\delta} + \alpha_2 X_2^{-\delta} + \alpha_3 X_3^{-\delta} \right] - \frac{\beta}{\delta} \] (1-1)

\[\text{لگاریتم طبیعی رابطه (1-1) به صورت رابطه (1-2) خواهد بود.} \]

\[\ln Y = \ln A - \frac{\beta}{\delta} \ln \left[\alpha_1 X_1^{-\delta} + \alpha_2 X_2^{-\delta} + \alpha_3 X_3^{-\delta} \right] \] (2-1)

عبارت داخل گیومه به صورت \(F(\delta) \) تعريف شده و حول نقطه \(\delta = 0 \) بسط داده می‌شود.

\[F(\delta) = \ln \left[\alpha_1 X_1^{-\delta} + \alpha_2 X_2^{-\delta} + \alpha_3 X_3^{-\delta} \right] \] (3-1)

مطابق بسط مکلورن:

\[F(0) = \frac{F(0)}{0!} + \frac{\beta F'(0)}{1!} + \frac{\beta^2 F''(0)}{2!} + ... + \frac{\beta^n F_n(0)}{n!} \] (4-1)

\[F(0) = 0 \]

\[F'(0) = - \left[\alpha_1 \ln X_1 + \alpha_2 \ln X_2 + \alpha_3 \ln X_3 \right] \] (5-1)

\[F''(0) = \varepsilon_{11} (\ln X_1)^2 + \varepsilon_{22} (\ln X_2)^2 + \varepsilon_{33} (\ln X_3)^2 - 2 \varepsilon_{12} (\ln X_1 \ln X_2) - 2 \varepsilon_{13} (\ln X_1 \ln X_3) - 2 \varepsilon_{23} (\ln X_2 \ln X_3) \]

پس از جایگزینی مقادیر مربوط به معادله‌های (1-5) در مقادیر متناژ آنها حول بسط دوم مکلورن مطابق رابطه (1-4) معادله (1-6) به دست آمده که همان تابع تولید ترانسلوگ خواهد بود.

\[\ln Y = \ln A + \sum \varepsilon_i \ln X_i + \left(1/2\right) \sum \sum \varepsilon_{ij} \ln X_i \ln X_j \] (5-1)

\(i, j = 1, 2, 3 \)
پوست بند

مشتاق اول تابع هزینه ترانسلوگ رابطه (۳-۱) نویاب تقاضای نهاده‌های تولید را بر اساس قضیه شهارد (۳-۲) ارائه می‌نماید.

\[
\frac{\Delta (\ln C)}{\Delta (\ln P)} = \phi_i + \sum \phi_{ij} \ln P_j
\] \hspace{1cm} (3-1)

\[
\frac{\Delta (C)}{\Delta (P)} = x_i
\] \hspace{1cm} (3-2)

\[
\frac{x_i P_i}{C} = \phi_i + \sum \phi_{ij} \ln P_j
\] \hspace{1cm} (3-3)

مشتاق دوم (کل) رابطه (۳-۳) مقادیر کشش‌های نقطه‌ای تقاضا را بر حسب کشش‌های جانشینی جزئی آن ارائه می‌نماید. مطابق رابطه (۳-۴) کشش‌های قیمتی هر یک از نهاده‌های تولید از حاصل ضرب کشش‌های جانشینی آن در مقادیر سهم هزینه‌ای نهاده‌ها (مشتاق اول تابع هزینه ترانسلوگ) به دست می‌آید.

\[
\frac{[x_i dP_i + P_i dX_i] C - [X_i P_i] dC}{C^2} = \sum \frac{\phi_{ij} dP_j}{P_j}
\] \hspace{1cm} (4-3)

اگر 1 = زبوده:

\[
\frac{[x_1 dP_1 + P_1 dX_1] C - [X_1 P_1] dC}{C^2} = \sum \phi_{11} dP_1
\] \hspace{1cm} (5-3)

\[
\frac{(x_1 P_1)}{C} + \frac{P_1^2 dX_1}{C.dP_1} - \frac{X_1 P_1^2 dC}{C^2.dP_1} = \phi_{11}
\] \hspace{1cm} (5-3)

\[
S_1 + \frac{P_1^2}{C} \frac{dX_1}{dP_1} \frac{X_1}{X_1} - S_1^2 = \phi_{11}
\] \hspace{1cm} (5-3)

\[
\frac{(x_1 P_1)}{C} \left(\frac{dX_1}{dP_1} \frac{P_1}{X_1} \right) = \phi_{11} - S_1 + S_1^2
\] \hspace{1cm} (8-3)
برآورد کشش‌های جزئی مستقیم و متقاطع آلن برای...

\[S_1 E_{11} = \varphi_{11} - S_1 + S_1^2 \]
\[E_{11} = \frac{\varphi_{11} - S_1 + S_1^2}{S_1} \]

اگر در رابطه (3-4) مقادیر 2 = زیاده، آن گاه مقادیر کشش‌های متقابل از طریق رابطه (3-11) به دست می‌آید.

\[\frac{[P_1 dX_1]C - [X_1 P_1]dC}{C_2} = \sum \frac{\varphi_{12} dP_2}{P_2} \]
\[\frac{(P_1 P_2)dx_1 x_1}{C dP_2} - \frac{(X_1 P_1)P_2 dC}{C^2 dP_2} = \varphi_{12} \]
\[\frac{P_1 X_1}{C} \frac{dx_1}{dP_2} - \frac{X_1 P_1 X_2 P_2}{C^2} = \varphi_{12} \]
\[\frac{P_1 x_1}{C} \frac{dx_1}{dP_2} = \frac{P_2}{X_1} = \varphi_{12} + S_1 S_2 \]
\[E_{12} = \frac{\varphi_{12} + S_1 S_2}{S_1} \]

کشش‌های قیمتی مستقیم و متقاطع ناقص عوامل تولید در معادله‌های (10-3) و (15-3) و (16-2) ارائه شده و مقادیر کشش‌های آلن نیز از طریق معادله‌های (3-10) و (18-1) محاسبه می‌گردد.

\[\sigma_{ij} = \frac{E_{ij}}{S_j} \]
\[\sigma_{11} = \frac{\varphi_{11} - S_1 + S_1^2}{S_1^2} \]
\[\sigma_{12} = \frac{\varphi_{12} + S_1 S_2}{S_1 S_2} \]
SYS - LS // Dependent Variable is SHCAP

Date: 12-28-1998 / Time: 13:50
SMPL range: 1338 - 1375
Number of observations: 38
System: MOD01.SYS - Equation 1 of 3
SHCAP=C(1)+C(2)*(LENPI-LW)+C(3)*(LIPI-LW)

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>STD. ERROR</th>
<th>T-STAT.</th>
<th>2-TAIL SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>0.8737254</td>
<td>0.0155133</td>
<td>56.321010</td>
</tr>
<tr>
<td>C(2)</td>
<td>-0.0569115</td>
<td>0.0131435</td>
<td>-4.3300284</td>
</tr>
<tr>
<td>C(3)</td>
<td>-0.1606085</td>
<td>0.0325498</td>
<td>-4.9342429</td>
</tr>
</tbody>
</table>

R-squared 0.862928 Mean of dependent var 0.735576
Adjusted R-squared 0.855095 S.D. of dependent var 0.150597
S.E. of regression 0.057327 Sum of squared resid 0.115022
F-statistic 110.1700 Durbin-Watson stat 0.127092
Prob(F-statistic) 0.000000

SYS - LS // Dependent Variable is SHEN

Date: 12-28-1998 / Time: 13:50
SMPL range: 1338 - 1375
Number of observations: 38
System: MOD01.SYS - Equation 2 of 3
SHEN=C(7)+C(8)*(LENPI-LW)+C(9)*(LIPI-LW)

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>STD. ERROR</th>
<th>T-STAT.</th>
<th>2-TAIL SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(7)</td>
<td>0.0180477</td>
<td>0.0009927</td>
<td>18.180127</td>
</tr>
<tr>
<td>C(8)</td>
<td>-0.0173591</td>
<td>0.0008411</td>
<td>-20.639358</td>
</tr>
<tr>
<td>C(9)</td>
<td>0.0221600</td>
<td>0.0020829</td>
<td>10.638999</td>
</tr>
</tbody>
</table>

R-squared 0.937790 Mean of dependent var 0.017556
Adjusted R-squared 0.934235 S.D. of dependent var 0.014305
S.E. of regression 0.003668 Sum of squared resid 0.000471
F-statistic 263.8058 Durbin-Watson stat 1.518642
Prob(F-statistic) 0.000000

SYS - LS // Dependent Variable is SHLAB

Date: 12-28-1998 / Time: 13:51
SMPL range: 1338 - 1375
Number of observations: 38
System: MOD01.SYS - Equation 3 of 3
SHLAB=C(11)+C(12)*(LENPI-LW)+C(13)*(LIPI-LW)

<table>
<thead>
<tr>
<th>COEFFICIENT</th>
<th>STD. ERROR</th>
<th>T-STAT.</th>
<th>2-TAIL SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(11)</td>
<td>0.1082269</td>
<td>0.0155840</td>
<td>6.9447422</td>
</tr>
<tr>
<td>C(12)</td>
<td>0.0742706</td>
<td>0.0132034</td>
<td>5.6251338</td>
</tr>
<tr>
<td>C(13)</td>
<td>0.1384485</td>
<td>0.0326981</td>
<td>4.2341457</td>
</tr>
</tbody>
</table>

R-squared 0.877182 Mean of dependent var 0.246868
Adjusted R-squared 0.870163 S.D. of dependent var 0.159821
S.E. of regression 0.057588 Sum of squared resid 0.116073
F-statistic 124.9867 Durbin-Watson stat 0.115861
Prob(F-statistic) 0.000000
پیوست د

سهم هزینه‌های نهاده‌های اولیه در فراوانی تولید، مطابق روش مذکور، به علت اتصال به فرضیه اشتغال کامل نهاده‌های تولید، بسب ارائه نسبت‌های منفی یا بزرگتر از واحد برای برخی از سال‌ها که ظرفیت‌های خالی نهاده‌ها وجود داشته، شده است، که برای رفع این مشکل از رابطه‌های جایگزین استفاده گردید. در این رابطه، مقادیر محصول ناخالص داخلی (بدون احتساب ارزش افزوده بخش نفت) تابعی از سطوح اشتغال نهاده‌های کار و موجودی سرمایه فرض شده و اثر بهبود فن آوری و نیز دوره جنگ نیز بر ظرفیت‌های تولید، به ترتیب، توسط متغیرهای روند و مجازی تبدیل گردید.

\[
GRP = a_1 + a_2^*K + a_3^*L + a_4^*T + a_5^* (T*DUM)
\]

\[
(\text{د}-1)
\]

ضریب‌های تخمینی متغیرهای کار و سرمایه معادله مذکور، به ترتیب، مقادیر تولید نهایی دو نهاده کار و سرمایه را ارائه می‌نماید. حاصل ضرب نهاده‌های مصری در ضریب‌های مربوط به هر یک از آنها، مقادیر تولید بالقوه مربوط به آن نهاده‌های خاص را مطابق رابطه (\(\text{د}-2\)) محاسبه می‌نماید.

\[
\text{GRP}_K = a_2^*K
\]

\[
\text{GRP}_L = a_3^*L
\]

\[
(\text{د}-2)
\]

\[
\text{GRP} = \text{GRP}_K + \text{GRP}_L
\]

مجموع مقادیر تولیدات مربوط به دو نهاده نیروی کار و سرمایه نیز ظرفیت تولید بالقوه را ارائه کرده و نسبت تولیدات هر یک از نهاده‌های مذکور به کل تولید بالقوه، سهم هزینه‌های آنها را در فراوانی تولید تعیین می‌نماید (\(\text{د}-3\)).

\[
b_1 = \frac{\text{GRP}_K}{\text{GRP}}
\]

\[
(\text{د}-3)
\]
<table>
<thead>
<tr>
<th>سال</th>
<th>کشتهای قیمتی کار-سرماهه</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/247</td>
<td>0/0.71</td>
<td>0/0.71</td>
<td>0/0.71</td>
<td>0/0.71</td>
<td>0/0.71</td>
</tr>
<tr>
<td>1/248</td>
<td>0/0.72</td>
<td>0/0.72</td>
<td>0/0.72</td>
<td>0/0.72</td>
<td>0/0.72</td>
</tr>
<tr>
<td>1/249</td>
<td>0/0.73</td>
<td>0/0.73</td>
<td>0/0.73</td>
<td>0/0.73</td>
<td>0/0.73</td>
</tr>
<tr>
<td>1/250</td>
<td>0/0.74</td>
<td>0/0.74</td>
<td>0/0.74</td>
<td>0/0.74</td>
<td>0/0.74</td>
</tr>
<tr>
<td>1/251</td>
<td>0/0.75</td>
<td>0/0.75</td>
<td>0/0.75</td>
<td>0/0.75</td>
<td>0/0.75</td>
</tr>
<tr>
<td>1/252</td>
<td>0/0.76</td>
<td>0/0.76</td>
<td>0/0.76</td>
<td>0/0.76</td>
<td>0/0.76</td>
</tr>
<tr>
<td>1/253</td>
<td>0/0.77</td>
<td>0/0.77</td>
<td>0/0.77</td>
<td>0/0.77</td>
<td>0/0.77</td>
</tr>
<tr>
<td>1/254</td>
<td>0/0.78</td>
<td>0/0.78</td>
<td>0/0.78</td>
<td>0/0.78</td>
<td>0/0.78</td>
</tr>
<tr>
<td>1/255</td>
<td>0/0.79</td>
<td>0/0.79</td>
<td>0/0.79</td>
<td>0/0.79</td>
<td>0/0.79</td>
</tr>
<tr>
<td>1/256</td>
<td>0/0.80</td>
<td>0/0.80</td>
<td>0/0.80</td>
<td>0/0.80</td>
<td>0/0.80</td>
</tr>
<tr>
<td>کار-انرژی</td>
<td>کشش متقابل</td>
<td>کار-سرماخوردگی</td>
<td>سرمایه-انرژی</td>
<td>انرژی</td>
<td>نیروی کار</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>27/07</td>
<td>1/52</td>
<td>-12/38</td>
<td>-91/37/95</td>
<td>-37/96</td>
<td>-3/78</td>
</tr>
<tr>
<td>40/38</td>
<td>1/70</td>
<td>-10/75</td>
<td>-61/78/65</td>
<td>-48/30</td>
<td>-5/39</td>
</tr>
<tr>
<td>42/55</td>
<td>1/74</td>
<td>-9/78</td>
<td>-58/70/58</td>
<td>-44/23</td>
<td>-7/53</td>
</tr>
<tr>
<td>44/58</td>
<td>1/80</td>
<td>-8/63</td>
<td>-50/68/50</td>
<td>-37/53</td>
<td>-8/61</td>
</tr>
<tr>
<td>40/58</td>
<td>1/85</td>
<td>-7/14</td>
<td>-55/45/55</td>
<td>-33/53</td>
<td>-8/61</td>
</tr>
<tr>
<td>45/39</td>
<td>1/85</td>
<td>-6/28</td>
<td>-54/78/54</td>
<td>-29/53</td>
<td>-8/61</td>
</tr>
<tr>
<td>39/25</td>
<td>2/00</td>
<td>-4/08</td>
<td>-38/45/35</td>
<td>-15/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>37/69</td>
<td>2/09</td>
<td>-3/11</td>
<td>-37/39/78</td>
<td>-10/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>47/24</td>
<td>2/30</td>
<td>-1/11</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>30/24</td>
<td>2/18</td>
<td>-1/15</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>19/50</td>
<td>2/14</td>
<td>-1/52</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>15/31</td>
<td>2/17</td>
<td>-0/68</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>17/17</td>
<td>2/19</td>
<td>-1/11</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>20/92</td>
<td>2/20</td>
<td>-1/54</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>13/7</td>
<td>2/25</td>
<td>-0/50</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>13/9</td>
<td>2/27</td>
<td>-0/50</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>11/5</td>
<td>2/31</td>
<td>-0/23</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
<tr>
<td>15/1</td>
<td>2/44</td>
<td>-0/38</td>
<td>-29/39/78</td>
<td>-5/55</td>
<td>-8/61</td>
</tr>
</tbody>
</table>
پوست و

S١ سهم هزینه‌ای سرمایه در هزینه عوامل تولید
S٢ سهم هزینه‌ای نیروی کار در هزینه عوامل تولید
S٣ سهم هزینه‌ای انرژی در هزینه عوامل تولید

کش مستقیم قیمتی سرمایه E١١
کش مستقیم قیمتی نیروی کار E٢١
کش مستقیم قیمتی انرژی E٣١

۱ نرخ برگشت سرمایه
۲ ارزش افزوده
۳ مقدار سرمایه گذاری در نرخ بهره حداکثر

شیب تابع سهم هزینه‌ای سرمایه بر حسب قیمت‌های نسبی سرمایه به کار

شیب تابع سهم هزینه‌ای نیروی کار بر حسب قیمت‌های نسبی سرمایه به کار

شیب تابع سهم هزینه‌ای انرژی بر حسب قیمت‌های نسبی سرمایه به کار

شیب تابع سهم هزینه‌ای سرمایه بر حسب قیمت‌های نسبی انرژی به کار

کش جزئی مستقیم سرمایه آلن
کش جزئی مستقیم نیروی کار آلن
کش جزئی مستقیم انرژی آلن
کش جزئی متقاطع سرمایه به انرژی آلن
کش جزئی متقاطع نیروی کار به انرژی آلن
نهادها، تغییرات نهادی و عملکرد اقتصادی

نویسنده: داگلاس سی. نورث
ترجمه: محمدرضا معینی