Volume 25, Issue 2 (Summer 2020)                   JEPR 2020, 25(2): 45-58 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Farhang Moghaddam B, Saedi Z. (2020). Performance Management of Public Transportation by the Network Data Envelopment Analysis (DEA) Model. JEPR. 25(2), 45-58. doi:10.52547/jpbud.25.2.45
URL: http://jpbud.ir/article-1-1928-en.html
1- Associate Professor, Department of Economics, Institute for Management and Planning studies, Tehran, Iran , farhang@imps.ac.ir
2- Ph.D. Student, Islamic Azad University Science and Research Branch, Tehran, Iran.
Abstract:   (3400 Views)
Public transportation and bus route management is a serious challenge for any city, and its efficiency is an important problem for cities and transport agencies. Routing of public transport systems is also a very complex issue that affects not only the performance efficiency and the construction or operation costs, but also the performance indicators such as passenger transport, travel speed, and savings in travel time. Data Envelopment Analysis (DEA) is an optimization-based method that is widely used to measure the relative performance efficiency of public transportation systems. This paper attempts to evaluate the performance of bus routes in a public transportation system using the two-stage DEA model. A conceptual framework for performance appraisal is presented and appropriate input and output indicators are selected to calculate the performance efficiency and service efficiency of each route. The performance of the achievement (model) is then analyzed and the bus routes that need to be reconfigured and optimized are identified. Ten bus routes in Tehran have been selected for practical applications.
Full-Text [PDF 683 kb]   (1291 Downloads)    
Type of Study: Research | Subject: public economics
Received: Sep 06 2020 | Accepted: Nov 27 2020 | ePublished: Feb 17 2021

References
1. Banker, R. D., Charnes, A., & Cooper, W. W. (1984). Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis. Management Science, 30(9), 1078-1092. [DOI:10.1287/mnsc.30.9.1078]
2. Barnum, D. T., Tandon, S., & McNeil, S. (2008). Comparing the Performance of Bus Routes after Adjusting for the Environment Using Data Envelopment Analysis. Journal of Transportation Engineering, 134(2), 77-85. [DOI:10.1061/(ASCE)0733-947X(2008)134:2(77)]
3. Boame, A. K. (2004). The Technical Efficiency of Canadian Urban Transit Systems. Transportation Research Part E: Logistics and Transportation Review, 40(5), 401-416. [DOI:10.1016/j.tre.2003.09.002]
4. Boilé, M. P. (2001). Estimating Technical and Scale Inefficiencies of Public Transit Systems. Journal of Transportation Engineering, 127(3), 187-194. [DOI:10.1061/(ASCE)0733-947X(2001)127:3(187)]
5. Cavaignac, L., & Petiot, R. (2017). A Quarter Century of Data Envelopment Analysis Applied to the Transport Sector: A Bibliometric Analysis. Socio-Economic Planning Sciences, 57(1), 84-96. [DOI:10.1016/j.seps.2016.11.003]
6. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444. [DOI:10.1016/0377-2217(78)90138-8]
7. Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. [DOI:10.2307/2343100]
8. Fielding, G. J., Glauthier, R. E., & Lave, C. A. (1978). Performance Indicators for Transit Management. Transportation, 7(4), 365-379. [DOI:10.1007/BF00168037]
9. Hwang, S.-N., Lee, H.-S., & Zhu, J. (2016). Handbook of Operations Analytics Using Data Envelopment Analysis: Springer. [DOI:10.1007/978-1-4899-7705-2]
10. Karlaftis, M. G. (2004). A DEA Approach for Evaluating the Efficiency and Effectiveness of Urban Transit Systems. European Journal of Operational Research, 152(2), 354-364. [DOI:10.1016/S0377-2217(03)00029-8]
11. Karlaftis, M. G., & Tsamboulas, D. (2012). Efficiency Measurement in Public Transport: Are Findings Specification Sensitive? Transportation Research Part A: Policy and Practice, 46(2), 392-402. [DOI:10.1016/j.tra.2011.10.005]
12. Lao, Y., & Liu, L. (2009). Performance Evaluation of Bus Lines with Data Envelopment Analysis and Geographic Information Systems. Computers, Environment and Urban Systems, 33(4), 247-255. [DOI:10.1016/j.compenvurbsys.2009.01.005]
13. Liu, H.-h., Yang, G.-l., Liu, X.-x., & Song, Y.-y. (2020). R&D Performance Assessment of Industrial Enterprises in China: A Two-Stage DEA Approach. Socio-Economic Planning Sciences, 71(1), 100753. [DOI:10.1016/j.seps.2019.100753]
14. Mahmoudi, R., Emrouznejad, A., Shetab-Boushehri, S.-N., & Hejazi, S. R. (2020). The Origins, Development and Future Directions of Data Envelopment Analysis Approach in Transportation Systems. Socio-Economic Planning Sciences, 69(1), 100672. [DOI:10.1016/j.seps.2018.11.009]
15. Nolan, J. F., Ritchie, P. C., & Rowcroft, J. (2001). Measuring Efficiency in the Public Sector Using Nonparametric Frontier Estimators: A Study of Transit Agencies in the USA. Applied Economics, 33(7), 913-922. 10.1080/00036840122663 [DOI:10.1080/00036840122663]
16. Odeck, J., & Alkadi, A. (2001). Evaluating Efficiency in the Norwegian Bus Industry Using Data Envelopment Analysis. Transportation, 28(3), 211-232. [DOI:10.1023/A:1010333518966]
17. Omrani, H., Shafaat, K., & Alizadeh, A. (2019). Integrated Data Envelopment Analysis and Cooperative Game for Evaluating Energy Efficiency of Transportation Sector: A Case of Iran. Annals of Operations Research, 274(1-2), 471-499. [DOI:10.1007/s10479-018-2803-5]
18. Pina, V., & Torres, L. (2001). Analysis of the Efficiency of Local Government Services Delivery. An Application to Urban Public Transport. Transportation Research Part A: Policy and Practice, 35(10), 929-944. [DOI:10.1016/S0965-8564(00)00033-1]
19. Sampaio, B. R., Neto, O. L., & Sampaio, Y. (2008). Efficiency Analysis of Public Transport Systems: Lessons for Institutional Planning. Transportation Research Part A: Policy and Practice, 42(3), 445-454. [DOI:10.1016/j.tra.2008.01.006]
20. Taboada, G. L., & Han, L. (2020). Exploratory Data Analysis and Data Envelopment Analysis of Urban Rail Transit. Electronics, 9(8), 1270. [DOI:10.3390/electronics9081270]
21. Tomazinis, A. R. (1977). Study of Efficiency Indicators of Urban Public Transportation Systems. Final Report. Transportation Studies Center, Pennsylvania University, Philadelphia (USA). [DOI:10.2172/5406787]
22. Tsamboulas, D. A. (2006). Assessing Performance under Regulatory Evolution: A European Transit System Perspective. Journal of Urban Planning and Development, 132(4), 226-234. [DOI:10.1061/(ASCE)0733-9488(2006)132:4(226)]
23. Viton, P. A. (1997). Technical Efficiency in Multi-Mode Bus Transit: A Production Frontier Analysis. Transportation Research Part B: Methodological, 31(1), 23-39. [DOI:10.1016/S0191-2615(96)00019-7]
24. Viton, P. A. (1998). Changes in Multi-Mode Bus Transit Efficiency, 1988-1992. Transportation, 25(1), 1-21. [DOI:10.1023/A:1004906024774]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 CC BY-NC 4.0 |

Designed & Developed by : Yektaweb