Volume 27, Issue 4 (Winter 2023)                   JPBUD 2023, 27(4): 153-176 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jafari Taraji M, Maddah M, Sharify N. (2023). Determining the Amount of Carbon Dioxide Emission from Primary Energy Consumption in Different Production Sectors of Iran: A multi-factor Energy Input-output Analysis. JPBUD. 27(4), 153-176. doi:10.52547/jpbud.27.4.153
URL: http://jpbud.ir/article-1-2139-en.html
1- Faculty of Management and Administrative Sciences, Semnan University, Semnan, Iran.
2- Deparment of Economics, Faculty of Management and Administrative Sciences, Semnan University, Semnan, Iran. , majid.maddah@semnan.ac.ir
3- Deparment of Economics, Faculty of Economics and Administrative Sciences, Mazandaran University, Babolsar, Iran.
Abstract:   (1062 Views)
This study investigates the impact of final demand change on primary energy consumption, renewable energy consumption, CO2 emissions, and economic growth. For this purpose, the multi-factor energy input-output method proposed by Guevara and Domingos (2017) has been adopted, and an input-Output table for the year 2016 has been used. The results show that among energy products, electricity has the highest primary energy consumption coefficient. Although the rate of renewable energy consumption in this product is higher than other products, due to the small share of renewable energy consumption in primary energy consumption, electricity has the highest rate of CO2 emission. Also, the efficiency of primary energy conversion to secondary energy is 24% with the lowest efficiency among energy products. Among non-energy products, non-metallic mineral products and transportation services have the highest primary
energy consumption coefficient and CO2 emission. The results of units’ emission production growth of the sectors related to non-energy products show that leather products had the least CO2 emissions per production growth unit. In contrast, transportation services had the highest emissions per production growth unit.
Full-Text [PDF 2074 kb]   (413 Downloads)    
Type of Study: Research | Subject: Energy Economics, Environment and Natural Resources
Received: Aug 23 2022 | Accepted: Feb 13 2023 | ePublished: Mar 15 2023

References
1. Ayres, R. U., & Nair, I. (1984). Thermodynamics and Economics. Physics Today, 37(11), 62-71. [DOI:10.1063/1.2915973]
2. Bagheri, M., Guevara, Z., Alikarami, M., Kennedy, C. A., & Doluweera, G. (2018). Green Growth Planning: A Multi-Factor Energy Input-Output Analysis of the Canadian Economy. Energy Economics, 74(1), 708-720. [DOI:10.1016/j.eneco.2018.07.015]
3. Balali, H., Zamani-Dadandeh, O., & Yousofi, A. (2013). The Relationship between Economic Growth and Environmental Pollution in Oil Sector with Emphasis on Oil Price Volatility: Case Study of Iran. Planning and Budgeting, 18(3), 49-66. [In Farsi] [http://jpbud.ir/article-1-1070-fa.html]
4. Banouei, A. A., & Kamal, E. (2014). Measurement of Direct and Indirect Co2 Contents of Exports and Imports of Iran: Using Input-Output Approach. Iranian Economic Development Analyses, 2(2), 41-70. [In Farsi] [https://ieda.alzahra.ac.ir/article_1902.html?lang=en]
5. Berndt, E. R. (1978). Aggregate Energy, Efficiency, and Productivity Measurement. Annual Review of Energy, 3(1), 225-273. [DOI:10.1146/annurev.eg.03.110178.001301]
6. Berndt, E. R., & Wood, D. O. (1975). Technology, Prices, and the Derived Demand for Energy. The Review of Economics and Statistics, 57(3), 259-268. [DOI:10.2307/1923910]
7. Bhattacharyya, S. C. (2019). Energy Economics: Concepts, Issues, Markets and Governance: Springer Nature. [DOI:10.1007/978-1-4471-7468-4]
8. Chontanawat, J., Hunt, L. C., & Pierse, R. (2006). Causality between Energy Consumption and GDP: Evidence from 30 OECD and 78 Non-OECD Countries. Surrey Energy Economics Centre (SEEC), School of Economics Discussion Papers (SEEDS) 113, Surrey Energy Economics Centre (SEEC), School of Economics, University of Surrey.
9. Darvishi, B., moridian, a., Motalebi, M., & havasbeigi, f. (2021). Globalization, Energy Consumption and Environmental Degradation in Iran: Empirical Evidence from the Maki Cointegration Test. The Economic Research (Sustainable Growth and Development), 21(2), 59-82. [In Farsi] [http://ecor.modares.ac.ir/article-18-45395-fa.html]
10. Denison, E. F. (1979). Accounting for Slower Economic Growth. The Brookings Institution.
11. Environmental Performance Index (EPI) (2022). EPI Results. [https://epi.yale.edu/epi-results/2022/component/epi]
12. Eslami Giski, S., Salimifar, M., & Esifi, A. (2022). The Effect of Industrial Agglomeration on Pollution Agglomeration: Spatial Econometric Approach. Planning and Budgeting, 27(1), 155-176. [In Farsi] [http://jpbud.ir/article-1-2077-fa.html] [DOI:10.52547/jpbud.27.1.155]
13. Guevara, Z., & Domingos, T. (2017). The Multi-Factor Energy Input-Output Model. Energy Economics, 61(1), 261-269. [DOI:10.1016/j.eneco.2016.11.020]
14. Guo, J., Zhang, Y.-J., & Zhang, K.-B. (2018). The Key Sectors for Energy Conservation and Carbon Emissions Reduction in China: Evidence from the Input-Output Method. Journal of Cleaner Production, 179(1), 180-190. [DOI:10.1016/j.jclepro.2018.01.080]
15. Jafari Samimi, A., & Najari, F. (2019). Evaluating the Contribution of Factors Affecting on Pollution Changes in Iran's Industrial Sector: Structural Decomposition Approach in the Input-Output Method. Journal of Environmental Science Studies, 4(1), 1055-1064. [In Farsi] [http://www.jess.ir/article_87049.html?lang=en]
16. Kunanuntakij, K., Varabuntoonvit, V., Vorayos, N., Panjapornpon, C., & Mungcharoen, T. (2017). Thailand Green GDP Assessment Based on Environmentally Extended Input-Output Model. Journal of Cleaner Production, 167(1), 970-977. [DOI:10.1016/j.jclepro.2017.02.106]
17. Liu, L., Huang, G., Baetz, B., & Zhang, K. (2018). Environmentally-Extended Input-Output Simulation for Analyzing Production-Based and Consumption-Based Industrial Greenhouse Gas Mitigation Policies. Applied Energy, 232(1), 69-78. [DOI:10.1016/j.apenergy.2018.09.192]
18. Miller, R. E., & Blair, P. D. (2009). Input-Output Analysis: Foundations and Extensions: Cambridge University Press. [DOI:10.1017/CBO9780511626982]
19. Nasrolahi, Z., Ahmadi, Z., & Eshrati, S. (2011). Environmental Impact Assessment of Economic Activity in Iran: An Input-output Approach. Economic Modelling, 6(17), 45-64. [https://eco.firuzkuh.iau.ir/article_555475.html]
20. National Oceanic and Atmospheric Administration (NOAA) (2017). Global Climate Report - Annual 2016. NOAA National Centers for Environmental Information. [https://www.ncdc.noaa.gov/sotc/global/201613 .]
21. Qayyum, M., Yu, Y., Nizamani, M. M., Raza, S., Ali, M., & Li, S. (2022). Financial Instability and CO2 Emissions in India: Evidence from ARDL Bound Testing Approach. Energy & Environment, 0958305X211065019. [DOI:10.1177/0958305X211065019]
22. Radwan, A., Hongyun, H., Achraf, A., & Mustafa, A. M. (2022). Energy Use and Energy-Related Carbon Dioxide Emissions Drivers in Egypt's Economy: Focus on the Agricultural Sector with a Structural Decomposition Analysis. Energy, 258(1), 124821. [DOI:10.1016/j.energy.2022.124821]
23. Ramos, C., García, A. S., Moreno, B., & Díaz, G. (2019). Small-Scale Renewable Power Technologies are an Alternative to Reach a Sustainable Economic Growth: Evidence from Spain. Energy, 167(1), 13-25. [DOI:10.1016/j.energy.2018.10.118]
24. Sabour, S. A. A. (2005). Quantifying the External Cost of Oil Consumption within the Context of Sustainable Development. Energy Policy, 33(6), 809-813. [DOI:10.1016/j.enpol.2003.10.006]
25. Sadeghi, Z., Horry, H., & Sadeghi Nasaj, S. S. (2021). Technical and Economical Comparison of Supplying Energy from Combined Solar-Wind Power Plants in Lieu of Natural Gas Transmission Lines. Planning and Budgeting, 26(2), 77-109. [In Farsi] [http://jpbud.ir/article-1-1935-fa.html] [DOI:10.52547/jpbud.26.2.77]
26. Shim, J. H. (2006). The Reform of Energy Subsidies for the Enhancement of Marine Sustainability. Case Study of South Korea, University of Delaware.
27. Shirmohammadi, R., Soltanieh, M., & Romeo, L. M. (2018). Thermoeconomic Analysis and Optimization of Post‐Combustion CO2 Recovery Unit Utilizing Absorption Refrigeration System for a Natural‐Gas‐Fired Power Plant. Environmental Progress & Sustainable Energy, 37(3), 1075-1084. [DOI:10.1002/ep.12866]
28. Stern, D. I. (1998). Progress on the Environmental Kuznets Curve? Environment and Development Economics, 3(2), 173-196. [DOI:10.1017/S1355770X98000102]
29. Stern, D. I. (2004). Economic Growth and Energy. Encyclopedia of Energy, 2(00147), 35-51. [DOI:10.1016/B0-12-176480-X/00147-9] [PMID] [PMCID]
30. Torabi, T., & Varesi, M. (2009). Studying the Environmental Pollution of Industries in Iran Using an Input-Output Approach (Special Case: CO2). Journal of Environmental Science and Technology, 11(3), 77-92. [In Farsi] [https://jest.srbiau.ac.ir/article_177.html?lang=en]
31. Uz Zaman, Q., Wang, Z., Zaman, S., & Rasool, S. F. (2021). Investigating the Nexus between Education Expenditure, Female Employers, Renewable Energy Consumption and CO2 Emission: Evidence from China. Journal of Cleaner Production, 312(1), 127824. [DOI:10.1016/j.jclepro.2021.127824]
32. World Bank (2019). Energy Use (kg of Oil Equivalent Per Capita). The World Bank Group.
33. Xia, Y., Fan, Y., & Yang, C. (2015). Assessing the Impact of Foreign Content in China's Exports on the Carbon Outsourcing Hypothesis. Applied Energy, 150(1), 296-307. [DOI:10.1016/j.apenergy.2015.04.028]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 CC BY-NC 4.0 | Planning and Budgeting

Designed & Developed by : Yektaweb