Volume 25, Issue 3 (Autumn 2020)                   JPBUD 2020, 25(3): 65-94 | Back to browse issues page

XML Persian Abstract Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khiabani N, Tavassoli S. (2020). A Review of Energy Demand Models. JPBUD. 25(3), 65-94. doi:10.52547/jpbud.25.3.65
URL: http://jpbud.ir/article-1-1965-en.html
1- Associate Professor, Faculty of Economics, Allameh Tabataba’i University. Tehran, Iran, , naser.khiabani@atu.ac.ir
2- Ph.D. Student of Economics, Allameh Tabataba’i University. Tehran, Iran.
Abstract:   (4463 Views)
Energy demand modeling is one of the main challenging issues for energy experts. This study attempts to identify the gaps and differences in the energy demand modeling literature. More specifically it concentrates on the properties of two approaches: "single equation" and "demand system", which are commonly used in this area. Our review indicates that the single-equation approach, despite its simplicity for estimating parameters, suffers from severe problems, such as endogeneity and instability in parameters. However, the serious problem with this approach is that its specification has not been supported by the rigorous microeconomic theory. On the other hand, the energy demand system model is explicitly derived from the microeconomic theory that makes it possible to derive own- and cross-price elasticities of energy fuels and  consider inter-fuel substitution. However, the major problem of this approach is that the demand elasticity estimates are more sensitive to selecting functional specifications. We investigate and compare the properties of the two common functional forms in energy demand systems namely, translog and linear logit model. Our results indicate that the linear logit model, under theoretical regularity conditions, can provide more convenient estimates of demand elasticities compared to the translog functional form.
Full-Text [PDF 740 kb]   (1105 Downloads)    
Type of Study: Research |
Received: Jan 13 2021 | Accepted: Feb 21 2021 | ePublished: Mar 19 2021

1. Altinay, G., & Yalta, A. T. (2016). Estimating the Evolution of Elasticities of Natural Gas Demand: The Case of Istanbul, Turkey. Empirical Economics, 51(1), 201-220. https://doi.org/10.1007/s00181-015-1012-1 [DOI]
2. Andrews, D. W. (1986). Stability Comparison of Estimators. Econometrica: Journal of the Econometric Society, 54(5), 1207-1235. [DOI]
3. Arnberg, S., & Bjørner, T. B. (2007). Substitution between Energy, Capital and Labour Within Industrial Companies: A Micro Panel Data Analysis. Resource and Energy Economics, 29(2), 122-136. [DOI]
4. Asche, F., Nilsen, O. B., & Tveteras, R. (2008). Natural Gas Demand in the European Household Sector. The Energy Journal, 29(3), 27-46. [DOI]
5. Banks, J., Blundell, R., & Lewbel, A. (1997). Quadratic Engel Curves and Consumer Demand. Review of Economics and Statistics, 79(4), 527-539. [DOI]
6. Bardazzi, R., Oropallo, F., & Pazienza, M. G. (2015). Do Manufacturing Firms React to Energy Prices? Evidence from Italy. Energy Economics, 49(1), 168-181. [DOI]
7. Barnett, W. A. (1983). New Indices of Money Supply and the Flexible Laurent Demand System. Journal of Business & Economic Statistics, 1(1), 7-23. [DOI]
8. Barnett, W. A. (2002). Tastes and Technology: Curvature Is Not Sufficient for Regularity. Journal of Econometrics, 108(1), 199-202. [DOI]
9. Barnett, W. A., & Lee, Y. W. (1985). The Global Properties of the Minflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms. Econometrica: Journal of the Econometric Society, 53(6), 1421-1437. [DOI]
10. Barnett, W. A., Lee, Y. W., & Wolfe, M. (1987). The Global Properties of the Two Minflex Laurent Flexible Functional Forms. Journal of Econometrics, 36(3), 281-298. [DOI]
11. Barnett, W. A., Lee, Y. W., & Wolfe, M. D. (1985). The Three-Dimensional Global Properties of the Minflex Laurent, Generalized Leontief, and Translog Flexible Functional Forms. Journal of Econometrics, 30(1-2), 3-31. [DOI]
12. Bello, M. O., Solarin, S. A., & Yen, Y. Y. (2018). Hydropower and Potential for Interfuel Substitution: The Case of Electricity Sector in Malaysia. Energy, 151(1), 966-983. [DOI]
13. Berkson, J. (1944). Application of the Logistic Function to Bio-Assay. Journal of the American Statistical Association, 39(227), 357-365. [DOI]
14. Berndt, E. R., & Wood, D. O. (1975). Technology, Prices, and the Derived Demand for Energy. The Review of Economics and Statistics, 57(3), 259-268. [DOI]
15. Bernstein, R., & Madlener, R. (2011). Residential Natural Gas Demand Elasticities in OECD Countries: An ARDL Bounds Testing Approach. FCN Working Paper No. 15/2011. [DOI]
16. Bölük, G., & Koç, A. A. (2010). Electricity Demand of Manufacturing Sector in Turkey: A Translog Cost Approach. Energy Economics, 32(3), 609-615. [DOI]
17. Burke, P. J., & Yang, H. (2016). The Price and Income Elasticities of Natural Gas Demand: International Evidence. Energy Economics, 59(1), 466-474. [DOI]
18. Caves, D. W., & Christensen, L. R. (1980). Global Properties of Flexible Functional Forms. The American Economic Review, 70(3), 422-432.
19. Cho, W. G., Nam, K., & Pagan, J. A. (2004). Economic Growth and Interfactor/Interfuel Substitution in Korea. Energy Economics, 26(1), 31-50. [DOI]
20. Christensen, L. R., Jorgenson, D. W., & Lau, L. J. (1973). Transcendental Logarithmic Production Frontiers. The Review of Economics and Statistics, 55(1), 28-45. [DOI]
21. Considine, T. J. (1989a). Estimating the Demand for Energy and Natural Resource Inputs: Trade–Offs in Global Properties. Applied Economics, 21(7), 931-945. [DOI]
22. Considine, T. J. (1989b). Separability, Functional Form and Regulatory Policy in Models of Interfuel Substitution. Energy Economics, 11(2), 82-94. [DOI]
23. Considine, T. J. (1990). Symmetry Constraints and Variable Returns to Scale in Logit Models. Journal of Business & Economic Statistics, 8(3), 347-353. [DOI]
24. Considine, T. J. (2000). The Impacts of Weather Variations on Energy Demand and Carbon Emissions. Resource and Energy Economics, 22(4), 295-314. [DOI]
25. Considine, T. J. (2018). Estimating Concave Substitution Possibilities with Non-Stationary Data Using the Dynamic Linear Logit Demand Model. Economic Modelling, 72(1), 22-30. [DOI]
26. Considine, T. J., & Manderson, E. (2014). The Role of Energy Conservation and Natural Gas Prices in the Costs of Achieving California's Renewable Energy Goals. Energy Economics, 44(1), 291-301. [DOI]
27. Considine, T. J., & Manderson, E. J. (2015). The Cost of Solar-Centric Renewable Portfolio Standards and Reducing Coal Power Generation Using Arizona as a Case Study. Energy Economics, 49(1), 402-419. [DOI]
28. Considine, T. J., & Mount, T. D. (1984). The Use of Linear Logit Models for Dynamic Input Demand Systems. The Review of Economics and Statistics, 66(3), 434-443. [DOI]
29. Considine, T. J., & Rose, A. (2001). The Future Role of Natural Gas in the World Energy Market: An Overview. The Future Role of Natural Gas in the World Energy Market, Markaz, ed, 9-23.
30. Dagher, L. (2012). Natural Gas Demand at the Utility Level: An Application of Dynamic Elasticities. Energy Economics, 34(4), 961-969. [DOI]
31. Dargay, J. M., & Gately, D. (2010). World Oil Demand’s Shift toward Faster Growing and Less Price-Responsive Products and Regions. Energy Policy, 38(10), 6261-6277. [DOI]
32. Denny, M., & Fuss, M. (1977). The Use of Approximation Analysis to Test for Separability and the Existence of Consistent Aggregates. The American Economic Review, 67(3), 404-418.
33. Diewert, W. E., & Wales, T. J. (1988). Normalized Quadratic Systems of Consumer Demand Functions. Journal of Business & Economic Statistics, 6(3), 303-312. [DOI]
34. Diewert, W. E., & Wales, T. J. (1989). Flexible Functional Forms and Global Curvature Conditions. NBER Technical Working Paper No. 40.
35. Dumagan, J. C., & Mount, T. D. (1992). Measuring the Consumer Welfare Effects of Carbon Penalties: Theory and Applications to Household Energy Demand. Energy Economics, 14(2), 82-93. [DOI]
36. Dumagan, J. C., & Mount, T. D. (1993). Welfare Effects of Improving End-Use Efficiency: Theory and Application to Residential Electricity Demand. Resource and Energy Economics, 15(2), 175-201. [DOI]
37. Erdogdu, E. (2010). Natural Gas Demand in Turkey. Applied Energy, 87(1), 211-219. [DOI]
38. Fuss, M. A. (1977). The Demand for Energy in Canadian Manufacturing: An Example of the Estimation of Production Structures with Many Inputs. Journal of Econometrics, 5(1), 89-116. [DOI]
39. Ghassan, H. B., & Banerjee, P. K. (2015). A Threshold Cointegration Analysis of Asymmetric Adjustment of OPEC and Non-OPEC Monthly Crude Oil Prices. Empirical Economics, 49(1), 305-323. [DOI]
40. Griffin, J. M., & Schulman, C. T. (2005). Price Asymmetry in Energy Demand Models: A Proxy for Energy-Saving Technical Change? The Energy Journal, 26(2), 1-21. [DOI]
41. Guilkey, D. K., & Lovell, C. K. (1980). On the Flexibility of the Translog Approximation. International Economic Review, 21(1), 137-147. [DOI]
42. Guilkey, D. K., Lovell, C. K., & Sickles, R. C. (1983). A Comparison of the Performance of Three Flexible Functional Forms. International Economic Review, 24(3), 591-616. [DOI]
43. Hall, V. B. (1986). Major OECD Country Industrial Sector Interfuel Substitution Estimates, 1960–1979. Energy Economics, 8(2), 74-89. [DOI]
44. Hausman, J. A. (1975). Project Independence Report: An Appraisal of US Energy Needs Up To 1985. The Bell Journal of Economics, 6(2), 517-551. [DOI]
45. He, Y., & Lin, B. (2019). Heterogeneity and Asymmetric Effects in Energy Resources Allocation of the Manufacturing Sectors in China. Energy, 170(1), 1019-1035. [DOI]
46. Hossain, A. N., & Serletis, A. (2017). A Century of Interfuel Substitution. Journal of Commodity Markets, 8(1), 28-42. [DOI]
47. Huntington, H. G. (2007). Industrial Natural Gas Consumption in the United States: An Empirical Model for Evaluating Future Trends. Energy Economics, 29(4), 743-759. [DOI]
48. Inglesi-Lotz, R. (2011). The Evolution of Price Elasticity of Electricity Demand in South Africa: A Kalman Filter Application. Energy Policy, 39(6), 3690-3696. [DOI]
49. Jones, C. T. (1995). A Dynamic Analysis of Interfuel Substitution in US Industrial Energy Demand. Journal of Business & Economic Statistics, 13(4), 459-465. [DOI]
50. Jones, C. T. (1996). A Pooled Dynamic Analysis of Interfuel Substitution in Industrial Energy Demand by the G-7 Countries. Applied Economics, 28(7), 815-821. [DOI]
51. Karimu, A., & Brännlund, R. (2013). Functional Form and Aggregate Energy Demand Elasticities: A Nonparametric Panel Approach for 17 OECD Countries. Energy Economics, 36(1), 19-27. [DOI]
52. Layard, P. R. G., & Walters, A. A. (1978). Microeconomic Theory: McGraw-Hill.
53. Liddle, B., & Huntington, H. (2020). Revisiting the Income Elasticity of Energy Consumption: A Heterogeneous, Common Factor, Dynamic OECD & Non-OECD Country Panel Analysis. The Energy Journal, 41(3), 207- 229. [DOI]
54. Lin, B., & Tian, P. (2017). Energy Conservation in China’s Light Industry Sector: Evidence from Inter-Factor and Inter-Fuel Substitution. Journal of Cleaner Production, 152(1), 125-133. [DOI]
55. Lin, B., Ankrah, I., & Manu, S. A. (2017). Brazilian Energy Efficiency and Energy Substitution: A Road to Cleaner National Energy System. Journal of Cleaner Production, 162(1), 1275-1284. [DOI]
56. Liu, K., Bai, H., Yin, S., & Lin, B. (2018). Factor Substitution and Decomposition of Carbon Intensity in China's Heavy Industry. Energy, 145(1), 582-591. [DOI]
57. Ma, C., & Stern, D. I. (2016). Long-Run Estimates of Interfuel and Interfactor Elasticities. Resource and Energy Economics, 46(1), 114-130. [DOI]
58. Madlener, R. (1996). Econometric Analysis of Residential Energy Demand. Journal of Energy Literature, 2(1), 3-32.
59. Madlener, R., Bernstein, R., & González, M. Á. A. (2011). Econometric Estimation of Energy Demand Elasticities: E. ON ERC Aachen.
60. Miljkovic, D., Dalbec, N., & Zhang, L. (2016). Estimating Dynamics of US Demand for Major Fossil Fuels. Energy Economics, 55(1), 284-291. [DOI]
61. Morana, C. (2007). Factor Demand Modelling: The Theory and the Practice. Applied Mathematical Sciences, 1(31), 1519-1549.
62. Moschini, G. (1998). The Semiflexible Almost Ideal Demand System. European Economic Review, 42(2), 349-364. [DOI]
63. Oum, T. H. (1979). A Warning on the Use of Linear Logit Models in Transport Mode Choice Studies. The Bell Journal of Economics, 10(1), 374-388. [DOI]
64. Pindyck, R. S. (1979a). Interfuel Substitution and the Industrial Demand for Energy: An International Comparison. The Review of Economics and Statistics, 61(2), 169-179. [DOI]
65. Pindyck, R. S. (1979b). The Structure of World Energy Demand (Vol. 22): MIT Press Cambridge, MA.
66. Polemis, M. L. (2012). Competition and Price Asymmetries in the Greek Oil Sector: An Empirical Analysis on Gasoline Market. Empirical Economics, 43(2), 789-817. [DOI]
67. Rentschler, J., & Kornejew, M. (2017). Energy Price Variation and Competitiveness: Firm Level Evidence from Indonesia. Energy Economics, 67(1), 242-254. [DOI]
68. Rothman, D. S., Hong, J. H., & Mount, T. D. (1994). Estimating Consumer Energy Demand Using International Data: Theoretical and Policy Implications. The Energy Journal, 15(2), 67-88.
69. Serletis, A., Timilsina, G. R., & Vasetsky, O. (2010). Interfuel Substitution in the United States. Energy Economics, 32(3), 737-745. [DOI]
70. Steinbuks, J. (2012). Interfuel Substitution and Energy Use in the UK Manufacturing Sector. The Energy Journal, 33(1), 1-29.
71. Steinbuks, J., & Narayanan, B. G. (2015). Fossil Fuel Producing Economies Have Greater Potential for Industrial Interfuel Substitution. Energy Economics, 47(1), 168-177. [DOI]
72. Urga, G. (1999). An Application of Dynamic Specifications of Factor Demand Equations to Interfuel Substitution in US Industrial Energy Demand. Economic Modelling, 16(4), 503-513. [DOI]
73. Urga, G., & Walters, C. (2003). Dynamic Translog and Linear Logit Models: A Factor Demand Analysis of Interfuel Substitution in US Industrial Energy Demand. Energy Economics, 25(1), 1-21. [DOI]
74. Uri, N. D. (1979). Energy Substitution in the UK, 1948–64. Energy Economics, 1(4), 241-244. [DOI]
75. Uzawa, H. (1962). Production Functions with Constant Elasticities of Substitution. The Review of Economic Studies, 29(4), 291-299. [DOI]
76. Wadud, Z., Dey, H. S., Kabir, M. A., & Khan, S. I. (2011). Modeling and Forecasting Natural Gas Demand in Bangladesh. Energy Policy, 39(11), 7372-7380. [DOI]
77. Wang, X., & Lin, B. (2017). Factor and Fuel Substitution in China's Iron & Steel Industry: Evidence and Policy Implications. Journal of Cleaner Production, 141(1), 751-759. [DOI]
78. Xie, C., Du, K., Zhao, Y., & Brandon, N. P. (2016). Possibilities of Coal–Gas Substitution in East Asia: A Comparison among China, Japan and South Korea. Natural Gas Industry B, 3(4), 387-397. [DOI]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 CC BY-NC 4.0 | Planning and Budgeting

Designed & Developed by : Yektaweb