Volume 24, Issue 3 (Autumn 2019)                   JPBUD 2019, 24(3): 111-132 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mamdoohi A R, Delfan Azari A, Alomoradi M. (2019). Estimating Bus Travel Time Using Survival Models. JPBUD. 24(3), 111-132. doi:10.29252/jpbud.24.3.111
URL: http://jpbud.ir/article-1-1891-en.html
1- Associate Professor, Faculty of Environment and Civil Engineering, Tarbiat Modares University, Tehran, Iran , armamdoohi@modares.ac.ir
2- M.A. Student in Economics, Institute for Management and Planning Studies (IMPS), Tehran, Iran.
3- Lecturer, Institute for Management and Planning Studies, Tehran, Iran.
Abstract:   (3773 Views)
 The prevailing model in the studies that estimate bus travel time is the linear regression which assumes the limit of the normal distribution for all observations. Besides, survival models can calculate that the probability of an event can change over time. Thus, examining event probabilities that change over time is ideal for risky basic models such as survival ones. Although these kinds of models are used less in the research of bus travel time, in this study Accelerated Failure Time (AFT) survival models and linear regression models are compared in the form of two modeling approaches, link-based, and section-based. As for modeling the Automated Vehicle Location (AVL), data of 32 buses in line number 313 in Tehran (from Sepah Sq. to Enqelab Sq.) is used, including the information for one week for May, August, and November 2015. According to the results, the accuracy of survival models is better than the linear regression model in both modeling approaches. Furthermore, the performance of the linear regression model is unfavorable for both observations of short (less than 100 seconds) and long (more than 900 seconds) travel time. In addition, the particular lane that has been built in the opposite direction in this route reduces the bus travel time by an average of about 15.7 percent.
Full-Text [PDF 1908 kb]   (1121 Downloads)    
Type of Study: Research | Subject: economic development, regional economics and growth
Received: Apr 25 2020 | Accepted: Jul 07 2020 | ePublished: Sep 14 2020

References
1. Alfa, A. S., Menzies, W. B., Purcha, J., & Mcpherson, R. (1988). A Regression Model for Bus Running Times in Suburban Areas of Winnipeg. Journal of Advanced Transportation, 21(3), 227-237. [DOI:10.1002/atr.5670210305]
2. Allison, P. D. (2014). Event History and Survival Analysis: Regression for Longitudinal Event Data (Vol. 46): SAGE Publications. [DOI:10.4135/9781452270029]
3. Brownstone, D., & Small, K. A. (2005). Valuing Time and Reliability: Assessing the Evidence from Road Pricing Demonstrations. Transportation Research Part A: Policy and Practice, 39(4), 279-293. [DOI:10.1016/j.tra.2004.11.001]
4. Cathey, F., & Dailey, D. J. (2003). A Prescription for Transit Arrival/Departure Prediction Using Automatic Vehicle Location Data. Transportation Research Part C: Emerging Technologies, 11(3-4), 241-264. [DOI:10.1016/S0968-090X(03)00023-8]
5. Chen, G., Yang, X., An, J., & Zhang, D. (2012). Bus-Arrival-Time Prediction Models: Link-Based and Section-Based. Journal of Transportation Engineering, 138(1), 60-66. [DOI:10.1061/(ASCE)TE.1943-5436.0000312]
6. Chen, M., Liu, X., Xia, J., & Chien, S. I. (2004). A Dynamic Bus-Arrival Time Prediction Model Based on APC Data. Computer-Aided Civil and Infrastructure Engineering, 19(5), 364-376. [DOI:10.1111/j.1467-8667.2004.00363.x]
7. Chien, S. I.-J., Ding, Y., & Wei, C. (2002). Dynamic Bus Arrival Time Prediction with Artificial Neural Networks. Journal of Transportation Engineering, 128(5), 429-438. [DOI:10.1061/(ASCE)0733-947X(2002)128:5(429)]
8. Gayah, V. V., Yu, Z., Wood, J. S., & Consortium, M. N. T. R. (2016). Estimating Uncertainty of Bus Arrival Times and Passenger Occupancies. Mineta Transportation Institute Publications.
9. Islam, M. K., Vandebona, U., Dixit, V. V., & Sharma, A. (2015). A Model to Evaluate the Impact of Headway Variation and Vehicle Size on the Reliability of Public Transit. IEEE Transactions on Intelligent Transportation Systems, 16(4), 1840-1850. [DOI:10.1109/TITS.2014.2377019]
10. Jenkins, S. P. (2005). Survival Analysis. Unpublished Manuscript, Institute for Social and Economic Research, University of Essex, Colchester, UK, 42(1), 54-56.
11. Jeong, R., & Rilett, L. R. (2005). Prediction Model of Bus Arrival Time for Real-Time Applications. Transportation Research Record, 1927(1), 195-204. [DOI:10.1177/0361198105192700123]
12. Kennedy, P. (2003). A Guide to Econometrics: MIT Press.
13. Kieu, L. M., Bhaskar, A., & Chung, E. (2012). Benefits and Issues for Bus Travel Time Estimation and Prediction. Paper Presented at the Australasian Transport Research Forum 2011 Proceedings.
14. Levinson, H. S. (1983). Analyzing Transit Travel Time Performance. Transportation Research Record, 915(1), 1-6.
15. McKnight, C., Paaswell, R., Ali, M., Kamga, C., & Cruz, W. (1997). Impact of Congestion on New York Bus Service. New York City Transit, New York.
16. Patnaik, J., Chien, S., & Bladikas, A. (2004). Estimation of Bus Arrival Times Using APC Data. Journal of Public Transportation, 7(1), 1-8. [DOI:10.5038/2375-0901.7.1.1]
17. Rahman, M. M., Wirasinghe, S., & Kattan, L. (2018). Analysis of Bus Travel Time Distributions for Varying Horizons and Real-Time Applications. Transportation Research Part C: Emerging Technologies, 86(1), 453-466. [DOI:10.1016/j.trc.2017.11.023]
18. Shalaby, A., & Farhan, A. (2004). Prediction Model of Bus Arrival and Departure Times Using AVL and APC Data. Journal of Public Transportation, 7(1), 3-10. [DOI:10.5038/2375-0901.7.1.3]
19. Vanajakshi, L., Subramanian, S. C., & Sivanandan, R. (2009). Travel Time Prediction under Heterogeneous Traffic Conditions Using Global Positioning System Data from Buses. IET Intelligent Transport Systems, 3(1), 1-9. [DOI:10.1049/iet-its:20080013]
20. Washington, S., Karlaftis, M. G., Mannering, F., & Anastasopoulos, P. (2020). Statistical and Econometric Methods for Transportation Data Analysis: CRC press. [DOI:10.1201/9780429244018]
21. Yu, B., Wang, H., Shan, W., & Yao, B. (2018). Prediction of Bus Travel Time Using Random Forests Based on Near Neighbors. Computer-Aided Civil and Infrastructure Engineering, 33(4), 333-350. [DOI:10.1111/mice.12315]
22. Yu, Z., Wood, J. S., & Gayah, V. V. (2017). Using Survival Models to Estimate Bus Travel Times and Associated Uncertainties. Transportation Research Part C: Emerging Technologies, 74(1), 366-382. [DOI:10.1016/j.trc.2016.11.013]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 CC BY-NC 4.0 | Planning and Budgeting

Designed & Developed by : Yektaweb