Autumn                   Back to the articles list | Back to browse issues page

XML Persian Abstract Print


1- University of Isfahan and Head of the Quarterly Accounts Department of the Statistical Center of Iran, Tehran, Iran , meisam.haddad66@gmail.com
2- from Tabriz University and expert at the National Bank of Iran, Tehran, Iran.
Abstract:   (130 Views)
Governments in the early 21st century are faced with challenging market dynamics and continuous changes caused by diverse and disruptive innovations, such as the Internet of Things, the Internet of Services, big data analytics, or artificial intelligence. These innovations also affect the way governments budget, so discussions about budgeting effectiveness are important for practitioners and researchers. Smart government is able to ensure solution-oriented budgeting approaches to solve budgeting obstacles, such as eliminating managers' motivation and innovative power, while ensuring strict accuracy in achieving smart government goals. Therefore, in the present study, using a descriptive-analytical method, the opportunities and challenges of artificial intelligence in the field of government budgeting were described and the question of how and to what extent artificial intelligence offers opportunities to improve existing budgeting approaches was answered. This research is the result of a literature review that uses the critical perspectives and analyses of other authors on budgeting approaches and combines them with the latest research on smart government and artificial intelligence in government budgeting. The results indicate that an AI-based budgeting approach can accelerate the budget allocation process and increase the accuracy and dynamism of budgeting by using more sophisticated analysis methods, which may provide new insights for decision makers. Also, the failure to neglect soft budgeting factors is one of the weaknesses of the AI-based budgeting approach that should be given special attention. In this regard, it is recommended that researchers identify the success factors of budgeting processes with insight into new economic, sociological, and psychological studies and apply an AI-based approach to remove budgeting obstacles.
     
Type of Study: Research | Subject: public economics
Received: May 13 2024 | Accepted: Nov 30 2024

References
1. Adler, J. (2021). El Gasto Público y el Desarrollo Econ'omico y Social. Asociaci'on Internacional de Presupuesto Público. Retrieved October 20, 2021, [from https: // asip.org.ar/el-gasto-publico-y-el-desarrolloeconomico-y-social/.]
2. Al-Besher, A., & Kumar, K. (2022). Use of artificial intelligence to enhance e-government services. Measurement Sensors, 24, 100484. [DOI:10.1016/j.measen.2022.100484]
3. Al-Hashmi, A., & Darem, A. (2008). Understanding Phases of E-government Project. Understanding Phases of E-government Project, 20, 152-157. [https://www.researchgate.net/publication/255572015]
4. Alexopoulos, C., Lachana, Z., Androutsopoulou, A., Diamantopoulou, V., Charalabidis, Y., & Loutsaris, M. A. (2019, April). How machine learning is changing e-government. In Proceedings of the 12th International Conference on Theory and Practice of Electronic Governance, pp. 354-363. [DOI:10.1145/3326365.3326412]
5. Allam, Z., & Dhunny, Z. A. (2019). On big data, artificial intelligence and smart cities. Cities, 89, 80-91. [DOI:10.1016/j.cities.2019.01.032]
6. Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490. [DOI:10.1016/j.giq.2020.101490]
7. Arel, I., Rose, D.C. & Karnowski, T.P. (2010). Deep Machine Learning-a New Frontier in Artificial Intelligence Research. IEEE Computational Intelligence Magazine, 5(4), 13-18. [DOI:10.1109/MCI.2010.938364]
8. Asogwa, I.E. & Etim, O.E. (2017). Traditional Budgeting in Today's Business Environment. Journal of Applied Finance and Banking, 7(3), 111.
9. Awoleye, O., Ojuloge, B. & Ilori, M. O. (2014). Web application vulnerability assessment and policy direction towards a secure smart government, 31(1), 118-125. [DOI:10.1016/j.giq.2014.01.012]
10. Ayala, F. J. (1996). Response to Templeton. Science, 272, 1363-1364. [DOI:10.1126/science.272.5266.1363b] [PMID]
11. Bar-Cohen, Y. (2006). Biomimetics: biologically inspired technology. II ECCOMAS THEMATIC CONFERENCE ON SMART STRUCTURES AND MATERIALS, Lisbon, Portugal. 18-21. [https://www.researchgate.net/publication/242526086]
12. Ben Rjab, A., & Mellouli, S. (2019). Artificial intelligence in smart cities: Systematic literature network analysis. In Paper presented at the 12th international conference on theory and practice of electronic governance, Melbourne, Australia. [DOI:10.1145/3326365.3326400]
13. Boucher, P. N. (2020). Artificial intelligence: How does it work, why does it matter, and what can we do about it?
14. Borzuzadeh, M. (2011). Operational Budgeting, Spinud Publications, Tehran.
15. Brownell, P. (1980). Participation in the Budgeting Process: When It Works and When It Doesn't. Journal of Accounting Literature, 1, 125-153.
16. Buchanan, J. M. (2014). Public finance in democratic process: Fiscal institutions and individual choice. UNC Press Books.
17. Bunce, P., Fraser, R. & Woodcock, L. (1995). Advanced Budgeting: A Journey to Advanced Management Systems. Management Accounting Research, 6(3), 253-265. [DOI:10.1006/mare.1995.1017]
18. Cellary, W. (2013). Smart governance for smart industries. InProceedings of the 7th International Conference on Theory and Practice of Electronic Governance. 91-93. [DOI:10.1145/2591888.2591903]
19. Dalton, H. (2013). Principles of public finance (Vol. 1). Routledge. [DOI:10.4324/9781315016948]
20. Desouza, K. C., Dawson, G. S., & Chenok, D. (2020). Designing, developing, and deploying artificial intelligence systems: Lessons from and for the public sector. Business Horizons, 63(2), 205-213. [DOI:10.1016/j.bushor.2019.11.004]
21. Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data-evolution, challenges and research agenda. International Journal of Information Management, 48, 63-71. [DOI:10.1016/j.ijinfomgt.2019.01.021]
22. Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., … others. (2019). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 101994. [DOI:10.1016/j.ijinfomgt.2019.08.002]
23. Ekholm, B.G. & Wallin, J. (2000). Is the Annual Budget Really Dead? European Accounting Review, 9(4), 519-539. [DOI:10.1080/09638180020024007]
24. El Misilmani, H.M. & Naous, T. (2019). Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms. In 2019 International Conference on High Performance Computing & Simulation (HPCS), IEEE, pp. 600-607. [DOI:10.1109/HPCS48598.2019.9188224]
25. Engin, Z., & Treleaven, P. (2019). Algorithmic government: Automating public services and supporting civil servants in using data science technologies. Computer Journal, 62(3), 448-460. [DOI:10.1093/comjnl/bxy082.]
26. Fanning, J. (1998). ABOLISH the Traditional Budgeting Process. Measuring Business Ex-cellence, 2(1), 4-5. [DOI:10.1108/eb025512]
27. Fatima, S., Desouza, K. C., & Dawson, G. S. (2020). National strategic artificial intelligence plans: A multi-dimensional analysis. Economic Analysis and Policy, 67, 178-194. [DOI:10.1016/j.eap.2020.07.008]
28. Fisher, J.G., Frederickson, J.R. & Peffer, S.A. (2000). Budgeting: An Experimental Investigation of the Effects of Negotiation. The Accounting Review, 75(1), 93-114. [DOI:10.2308/accr.2000.75.1.93]
29. Fisher, J.G., Frederickson, J.R. & Peffer, S.A. (2006). Budget Negotiations in Multi-Period Settings. Accounting, Organizations and Society, 31(6), 511-528. [DOI:10.1016/j.aos.2005.12.008]
30. Gandomi, A. & Haider, M. (2015). Beyond the Hype: Big Data Concepts, Methods, and Analytics. International Journal of Information Management, 35(2), 137-144. [DOI:10.1016/j.ijinfomgt.2014.10.007]
31. Gartner. (2019). 3 Barriers to Adopting Artificial Intelligence in Financial Planning and Analysis, p. 1-8.
32. Gil-Garcia, J. R., Helbig, N., & Ojo, A. (2014). Being smart: Emerging technologies and innovation in the public sector. Government Information Quarterly, 31, I1-I8. [DOI:10.1016/j.giq.2014.09.001]
33. Grove, W.M., Zald, D.H., Lebow, B.S., Snitz, B.E. & Nelson, C. (2000). Clinical Versus Mechanical Prediction: A Meta-Analysis. Psychological Assessment, 12(1), 19. [DOI:10.1037/1040-3590.12.1.19] [PMID]
34. Gruber, J. (2005). Public finance and public policy. Macmillan.
35. Gomes de Sousa, W., Pereira de Melo, E. R., De Souza Bermejo, P. H., Sousa Farias, R. A., & Oliveira Gomes, A. (2019). How and where is artificial intelligence in the public sector going? A literature review and research agenda. Government Information Quarterly, 36(4),101392. [DOI:10.1016/j.giq.2019.07.004]
36. Goode, M. & Malik, A. (2011). Beyond Budgeting: The Way Forward? Pakistan Journal of Social Sciences (PJSS), 31(2).
37. Hansen, S.C., Otley, D.T. & Van der Stede, W.A. (2003). Practice Developments in Budgeting: An Overview and Research Perspective. Journal of Management Accounting Research, 15(1), 95-116. [DOI:10.2139/ssrn.410544]
38. Hassan, I. M., Mahdi, A. A., & Al-Khafaji, N. J. (2014). Theoretical Study to Highlight the Smart Government Components in 21 st Century. International Journal of Computer Science and Mobile Computing, 3(12), 333-347.
39. Hofstede, G.H. (2012). The Game of Budget Control. Koninklijke Van Gorcum & Compo N.V., Assen, The Netherland, 1-7. [DOI:10.4324/9780203714874] []
40. Hope, J. & Fraser, R. (2003). Beyond Budgeting: How Managers Can Break Free from the Annual Performance Trap, Harvard Business School Press, 108-115.
41. Horvàth. (2009). Controlling, 11. Aufl., Verlag Vahlen, München.
42. Jäger, C. & Altrogge, C. (2011). Beyond Budgeting vs. Better Budgeting-eine kritische Analyse zukünftiger Entwicklungen. Schriften zur angewandten Mittelstandsforschung, 3(9), 1-13.
43. Janssen, M., Brous, P., Estevez, E., Barbosa, L. S., & Janowski, T. (2020). Data governance: Organizing data for trustworthy artificial intelligence. Government Information Quarterly, 37(3), 101493. [DOI:10.1016/j.giq.2020.101493]
44. Jensen, M.C. (2003). Paying People to Lie: The Truth About the Budgeting Process. European Financial Management, 9(3), 379-406. [DOI:10.2139/ssrn.267651]
45. Jiménez, C. E., Falcone, F., Solanas, A., Puyosa, H., Zoughbi, S., & González, F. (2014). Smart Government: Opportunities and Challenges in. Handbook of Research on Democratic Strategies and Citizen-Centered E-Government Services, 1. [DOI:10.4018/978-1-4666-7266-6.ch001]
46. Jin, G. Z., & Lee, J. (2014). Inspection technology, detection, and compliance: evidence from Florida restaurant inspections. The RAND Journal of Economics, 45(4), 885-917. [DOI:10.1111/1756-2171.12074]
47. Jorgenson, D., W. (1986). Econometric methods for modeling producer behavior, Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 31, pages 1841-1915, Elsevier. [DOI:10.1016/S1573-4412(86)03011-8]
48. Kahneman, D. (2015). Daniel Kahneman: What would I eliminate if I had a magic wand? Overconfidence. Sat, 18, 09-00.
49. Kaplan, A. & Haenlein, M. (2019). Siri, Siri, in My Hand: Who's The Fairest in the Land? On The Interpretations, Illustrations, and Implications of Artificial Intelligence. Business Horizons, 62(1), 15-25. [DOI:10.1016/j.bushor.2018.08.004]
50. Kliksberg, B. (2000). Rebuilding the state for social development: towards smart government. International Review of Administrative Sciences, 66(2), 241-257. [DOI:10.1177/0020852300662002]
51. Kramer, S. & Hartmann, F. (2014). How Top-down and Bottom-up Budgeting Affect Budget Slack and Performance Through Social and Economic Exchange. Abacus, 50(3), 314-340. [DOI:10.1111/abac.12032]
52. Kyj, L. & Parker, R. J. (2008). Antecedents of budget participation: leadership style, information asymmetry, and evaluative use of budget. Abacus, 44(4), 423-442. [DOI:10.1111/j.1467-6281.2008.00270.x]
53. Lehr, D. & Ohm, P. (2017). Playing with the Data: What Legal Scholars Should Learn About Machine Learning. UCDL Rev., 51, 653.
54. Libby, T. & Lindsay, R.M. (2010). Beyond Budgeting or Budgeting Reconsidered? A Survey of North- American Budgeting Practice. Management Accounting Research, 21(1), 56-75. [DOI:10.1016/j.mar.2009.10.003]
55. Luft, J. & Shields, M.D. (2003). Mapping Management Accounting: Graphics and Guidelines for Theory- Consistent Empirical Research. Accounting, Organizations and Society, 28(2-3), 169-249. [DOI:10.1016/S0361-3682(02)00026-0]
56. Marotta, G., Krahnhof, P. & Au, C.D. (2022). A Critical Analysis of Budgeting Pro-cesses from the Pharmaceutical Industry and Beyond. Journal of Applied Finance & Banking, 12(3), 35-53. [DOI:10.47260/jafb/1233]
57. Marotta, G., & Au, C.D. (2022). Budgeting in the Age of Artificial Intelligence - New Approaches, Old Challenges? International Journal of Artificial Intelligence and Machine Learning, 2(2), 1-11. [DOI:10.51483/IJAIML.2.2.2022.1-11]
58. Mellouli, S., Luna-Reyes, L. F., & Zhang, J. (2014). Smart government, citizen participation and open data. Information Polity, 19(1, 2), 1-4. [DOI:10.3233/IP-140334]
59. McCloskey, J. C. (1990). McCloskey-Mueller Satisfaction Scale (MMSS) [Database record]. APA PsycTests. [DOI:10.1037/t37505-000]
60. Moore, M. O., & Suranovic, S. M. (1993). Lobbying and Cournot-Nash competition: Implications for strategic trade policy. Journal of International Economics, 35(3-4), 367-376. [DOI:10.1016/0022-1996(93)90025-S]
61. Morlidge, S. & Player, S. (2010). Future Ready: How to Master Business Forecasting. John Wiley & Sons.
62. Mosavi, J., & Bazrafshan, M. (2008), Smart government, 2nd International Performance Based Budgeting Conference, Tehran, Iran.
63. Neely, A., Bourne, M. & Adams, C. (2003). Better Budgeting or Beyond Budgeting? Measuring Business Excellence, 7(3), 22-28. [DOI:10.1108/13683040310496471]
64. OECD PUBLICATIONS, 2, rue André-Pascal, 75775 PARIS CEDEX 16 PRINTED IN FRANCE (01 2003 07 1) No. 81911 2003. [https://www.oecd.org/en/publications/oecd-annual-report-2003_annrep-2003-en.html]
65. Player, S. (2003). Why Some Organizations Go Beyond Budgeting. Journal of Corporate Accounting & Finance, 14(3), 3-9. [DOI:10.1002/jcaf.10146]
66. Parker, L.D. & Lewis, N.R. (1995). Classical Management Control in Contemporary Management and Accounting: The Persistence of Taylor and Fayol's World. Accounting, Business & Financial History, 5(2), 211-236. [DOI:10.1080/09585209500000040]
67. Parkes, D.C. & Wellman, M.P. (2015). Economic Reasoning and Artificial Intelligence. Science, 349(6245), 267-272. [DOI:10.1126/science.aaa8403] [PMID]
68. Pennachin, C. & Goertzel, B. (2007). Contemporary Approaches to Artificial General Intelligence. In Artificial General Intelligence, pp. 1-30. Springer, Berlin, Heidelberg. [DOI:10.1007/978-3-540-68677-4_1]
69. Porezat, A., & Tahery Atar, Gh. (2006). Toward an intelligent governance. Organizational Culture Management, 4(3), 131-150. [DOI:10.35629/5252-0301361372]
70. Research Center of the Islamic Consultative Assembly of the Report. (2018).
71. Rubel, T. (2014). Smart government: creating more effective information and services. Retrieved, 2 May 2016, from: http://www.govdelivery.com. [doi/10.1145/3465061]
72. Ryan, J., McClure, C. R., & Wigand, R. T. (1994). Federal information resources management: new challenges for the nineties. Government Information Quarterly, 11(3),301-314. [DOI:10.1016/0740-624X(94)90049-3]
73. Savoldelli, A., Codagnone, C., & Misuraca, G. (2014). Understanding the egovernment paradox: Learning from literature and practice on barriers to adoption. Government Information Quarterly, 31, S63-S71. [DOI:10.1016/j.giq.2014.01.008]
74. Shields, J.F. & Shields, M.D. (1998). Antecedents of Participative Budgeting. Accounting, Organizations and Society, 23(1), 49-76. [DOI:10.1016/S0361-3682(97)00014-7]
75. Simon, H. A. (1996). The sciences of the artificial. The MIT Press. Solt, F. (2009). Standardizing the world income inequality database. Social Science Quarterly, 90(2), 231-242. [DOI:10.1111/j.1540-6237.2009.00614.x]
76. Sudan, R. (2000). Towards SMART government: the Andhra Pradesh experience. Indian Journal of Public Administration, 46(3), 401-410. Sudan, R. (2000). Towards SMART government: the Andhra Pradesh experience. Indian Journal of Public Administration [DOI:10.1177/0019556120000311]
77. Sun, T. Q., & Medaglia, R. (2019). Mapping the challenges of artificial intelligence in the public sector: Evidence from public healthcare. Government Information Quarterly, 36 (2), 368-383. [DOI:10.1016/j.giq.2018.09.008.]
78. Swiecki, Z., Khosravi, H., Chen, G., Martinez-Maldonado, R., Lodge, J. M., Milligan, S., ... & Gašević, D. (2022). Assessment in the age of artificial intelligence. Computers and Education: Artificial Intelligence, 3, 100075. [DOI:10.1016/j.caeai.2022.100075]
79. Tanimoto, S. (1987). The Elements of Artificial Intelligence. Computer Science Press.
80. Unesco. (2020). Global Education Monitoring Report Team. [https://unesdoc.unesco.org/ark:/48223/pf0000373721_pes]
81. Valle-Cruz, D., Criado, J. I., Sandoval-Almaz'an, R., & Ruvalcaba-Gomez, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37(4), Article 101509. [DOI:10.1016/j.giq.2020.101509]
82. Valle-Cruz, D., Gil-Garcia, J. R., & Fernandez-Cortez, V. (2020). Towards smarter public budgeting? Understanding the potential of artificial intelligence techniques to support decision making in government. In The 21st annual international conference on digital government research, pp. 232-242. [DOI:10.1145/3396956.3396995]
83. Valle-Cruz, D., Fernandez-Cortez, V., & Gil-Garcia, J. R. (2022). From E-budgeting to smart budgeting: Exploring the potential of artificial intelligence in government decision-making for resource allocation. Government Information Quarterly, 39, Article 101644. [DOI:10.1016/j.giq.2021.101644]
84. Wallander, J. (1999). Budgeting - An Unnecessary Evil. Scandinavian Journal of Management, 15(4), 405-421. [DOI:10.1016/S0956-5221(98)00032-3]
85. Wang, W., & Siau, K. (2018). Artificial intelligence: A study on governance, policies, and regulations. In Paper presented at the 13th Annual Conference of the Midwest Association for Information Systems, Saint Louis, Missouri.
86. Wagner III, J.A. (1994). Participation's Effects on Performance and Satisfaction: A Re-consideration of Research Evidence. Academy of Management Review, 19(2), 312-330. [DOI:10.2307/258707]
87. Wentzel, K. (2002). The Influence of Fairness Perceptions and Goal Commitment on Managers' Performance in a Budget Setting. Behavioral Research in Accounting, 14(1), 247-271. [DOI:10.2308/bria.2002.14.1.247]
88. Wirl, F. (1990). Do volatile oil prices and consumer adjustment costs justify an additional petroleum tax?. The Energy Journal, 11(1), 147-150. [DOI:10.5547/ISSN0195-6574-EJ-Vol11-No1-1]
89. Wirtz, B. W., Weyerer, J. C., & Sturm, B. J. (2020). The dark sides of artificial intelligence: An integrated AI governance framework for public administration. International Journal of Public Administration, 43(9), 818-829. [DOI:10.1080/01900692.2020.1749851]
90. Young, S.M. (1985). Participative Budgeting: The Effects of Risk Aversion and Asymmetric Information on Budgetary Slack. Journal of Accounting Research, 829-842. [DOI:10.2307/2490840]
91. Zhongzhi, S. (2019). Advanced Artificial Intelligence (Vol. 4). World Scientific.
92. Zuiderwijk, A., Chen, Y. C., & Salem, F. (2021). Implications of the use of artificial intelligence in public governance: A systematic literature review and a research agenda. Government Information Quarterly, 38(3), 101577. [DOI:10.1016/j.giq.2021.101577]
93. Zyder, M. (2007). Die Gestaltung der Budgetierung: eine empirische Untersuchung in deutschen Unternehmen. Springer- Verlag. [https://www.idc.com/]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 CC BY-NC 4.0 |

Designed & Developed by : Yektaweb