XML English Abstract Print


سازمان تحقیقات، آموزش و ترویج کشاورزی ، kargar.navid@yahoo.com
چکیده:   (392 مشاهده)

معیار ردپای اکولوژیکی معرف مجموعه فشارها بر محیط‌زیست است و به عنوان موفق‌ترین شاخص جهت ارزیابی توسعه‌ی پایدار قلمداد می‌شود. یکی از مهم‌ترین اقدامات در جهت کاهش ردپای اکولوژیکی، بهره‌مندی از انرژی‌های پاک است که با کمترین تأثیر منفی بر محیط پیرامون، تا حد زیادی چالش‌های بزرگ به وجود آمده ناشی از گرمایش جهانی را مرتفع می‌سازد. در این مطالعه، میزان اثرگذاریِ انرژی‌های تجدیدپذیر، امید به زندگی و جهانی‌سازی بر شاخص ردپای اکولوژیکی در چارچوب فرضیه زیست‌محیطی ﮐﻮزﻧﺘﺲ (EKC) و با بهره‌مندی از جدیدترین داده‌ها در طی دوره زمانی 2020-1990 مورد بررسی قرار گرفت. در این راستا، پس از ارزیابی نتایج ایستایی متغیرها، به منظور بررسی روابط بلندمدت و کوتاه‌‌‌مدت از رهیافت هم‌جمعی در قالب مدل خودتوضیحی با وقفه‌های گسترده (ARDL) استفاده شد. نتایج پژوهش حاکی از آن است که مصرف انرژی‌های پاک مطابق انتظار نقشی مثبت در بهبود کیفیت محیط‌زیست دارد؛ به‌‌طوری که انتظار می‌رود با یک درصد افزایش در مصرف انرژی‌های پاک، با ثابت بودن سایر شرایط، ردپای اکولوژیکی در کوتاه‌مدت و بلندمدت به ترتیب حدود 05/0 و 08/0 درصد کاهش پیدا کند. معیار جهانی‌سازیِ تجارت علیرغم اثرگذاری مثبت، فاقد معنی‌داری آماری بود. همچنین، نتایج حاکی از آن است که با افزایش نرخ امید به زندگی و به تبع آن، فرصت بیشتر جهت تصرف در طبیعت، منجر به تشدید ردپای انسان و تخریب محیط‌زیست می‌شود. همچنین، نتایجِ پژوهش موید وجود یک رابطه U شکلِ وارون میان رشد اقتصادی و ردپای اکولوژیکی است. بر اساس یافته‌ها، پیشنهاد می‌شود که در اتخاذ سیاست‌های کلان اقتصادی، پیامدهای فوق به‌ویژه تاثیر انرژی‌های تجدیدپذیر بر بهبود کیفیت محیط‌زیست مدنظر قرار گیرد و با ایجاد زیرساخت‌های لازم و سیاست تنوع‌بخشی در تامین منابع انرژی تا حد امکان سهم انرژی‌های پاک افزایش یابد.

 

 

 

     
نوع مطالعه: پژوهشي | موضوع مقاله: اقتصاد انرژی، محیط زیست و منابع طبیعی
دریافت: 1403/6/5 | پذیرش: 1403/12/14

فهرست منابع
1. Asici, A. A. & S. Acar. (2016). Does income growth relocate ecological footprint?. Ecological Indicators, 61 (2): 707-714. [DOI:10.1016/j.ecolind.2015.10.022]
2. Azam, M., Uddin, I., Khan, S., & Tariq, M. (2022). Are globalization, urbanization, and energy consumption cause carbon emissions in SAARC region? New evidence from CS-ARDL approach. Environmental Science and Pollution Research, 29(58), 87746-87763. [DOI:10.1007/s11356-022-21835-1] [PMID]
3. Baltagi, B. (2008). Econometric analysis of panel data (Vol. 1). John Wiley & Sons.
4. Barros, L., & Martínez-Zarzoso, I. (2022). Systematic literature review on trade liberalization and sustainable development. Sustainable Production and Consumption, 33, 921-931. [DOI:10.1016/j.spc.2022.08.012]
5. Çakmak, E. E., & Acar, S. (2022). The nexus between economic growth, renewable energy and ecological footprint: An empirical evidence from most oil-producing countries. Journal of Cleaner Production, 352, 131548. [DOI:10.1016/j.jclepro.2022.131548]
6. Charfeddine, L. & Mrabet Z. (2017). The impact of economic development and social-political factors on ecological footprint: A panel data analysis for 15 MENA countries. Renewable and Sustainable Energy Reviews, 76: 138-154. [DOI:10.1016/j.rser.2017.03.031]
7. Cristea, A., Hummels, D., Puzzello, L., & Avetisyan, M. (2013). Trade and the greenhouse gas emissions from international freight transport. Journal of environmental economics and management, 65(1), 153-173. [DOI:10.1016/j.jeem.2012.06.002]
8. Duru, I. U., Okafor, B. O., Adikwu, F. O., & Njoku, F. C. (2020). Trade liberalization and economic growth: An assessment of Nigerian experience. Asian Development Policy Review, 8(3), 194-213. [DOI:10.18488/journal.107.2020.83.194.213]
9. Ellabban, O., Abu-Rub, H. and Blaabjerg, F., (2014): Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748-764. [DOI:10.1016/j.rser.2014.07.113]
10. Fakher, H. A., Ahmed, Z., Acheampong, A. O., & Nathaniel, S. P. (2023). Renewable energy, nonrenewable energy, and environmental quality nexus: An investigation of the N-shaped Environmental Kuznets Curve based on six environmental indicators. Energy, 263, 125660. [DOI:10.1016/j.energy.2022.125660]
11. GFN (Global Footprint Network). (2024). Retrieved July 18, 2024, from [https://www.footprintnetwork.org/.]
12. Haq, S. M. A., Chowdhury, M. A. F., Ahmed, K. J., & Chowdhury, M. T. A. (2023). Environmental quality and its impact on total fertility rate: an econometric analysis from a new perspective. BMC Public Health, 23(1), 2397. [DOI:10.1186/s12889-023-17305-z] [PMID] []
13. Idroes, G. M., Hardi, I., Rahman, M. H., Afjal, M., Noviandy, T. R., & Idroes, R. (2024). The dynamic impact of non-renewable and renewable energy on carbon dioxide emissions and ecological footprint in Indonesia. Carbon Research, 3(1), 1-21. [DOI:10.1007/s44246-024-00117-0]
14. Islam, M. M., Khan, M. K., Tareque, M., Jehan, N., & Dagar, V. (2021). Impact of globalization, foreign direct investment, and energy consumption on CO2 emissions in Bangladesh: Does institutional quality matter?. Environmental Science and Pollution Research, 28(35), 48851-48871. [DOI:10.1007/s11356-021-13441-4] [PMID]
15. Jomhehpoor, M.; Hataminejad, H.& Shahnavaz, S. (2013). Investigating the status of sustainable development of Rasht city using ecological footprint method. Human geographic research, 45 (3): 191-208. (in Persian). [https://DOI: 10.22059/jhgr.2013.35252]
16. Kartal, M. T. (2023). Production-based disaggregated analysis of energy consumption and CO2 emission nexus: evidence from the USA by novel dynamic ARDL simulation approach. Environmental Science and Pollution Research, 30(3), 6864-6874. [DOI:10.1007/s11356-022-22714-5] [PMID]
17. Kwakwa, P. A. (2020). Ghana's economic growth and welfare issues. Retrieved November 20, 2024, from https://mpra.ub.uni-muenchen.de/id/eprint/96019 [https://EconPapers.repec.org/RePEc:pra:mprapa:96019]
18. Li, R., & Wang, Q. (2023). Does renewable energy reduce per capita carbon emissions and per capita ecological footprint? New evidence from 130 countries. Energy Strategy Reviews, 49, 101121. [DOI:10.1016/j.esr.2023.101121]
19. Li, R., Wang, X., & Wang, Q. (2022). Does renewable energy reduce ecological footprint at the expense of economic growth? An empirical analysis of 120 countries. Journal of Cleaner Production, 346, 131207. [DOI:10.1016/j.jclepro.2022.131207]
20. Lin, D., Hanscom, L., Martindill, J., Borucke, M., Cohen, L., Galli, A., Lazarus, E., Zokai, G., Iha, K., Eaton and Wackernagel, D.M. (2016). Working Guidebook to the National Footprint Accounts: 2016 Edition. Oakland: Global Footprint Network.
21. Liu, H., Wong, W. K., Cong, P. T., Nassani, A. A., Haffar, M., & Abu-Rumman, A. (2023). Linkage among Urbanization, energy Consumption, economic growth and carbon Emissions. Panel data analysis for China using ARDL model. Fuel, 332, 126122. [DOI:10.1016/j.fuel.2022.126122]
22. Mohamed, E. F., Abdullah, A., Jaaffar, A. H., & Osabohien, R. (2024). Reinvestigating the EKC hypothesis: Does renewable energy in power generation reduce carbon emissions and ecological footprint?. Energy Strategy Reviews, 53, 101387. [DOI:10.21203/rs.3.rs-3940236/v1]
23. Oyebanji, M. O., Kirikkaleli, D., & Awosusi, A. A. (2023). Consumption‐based CO2 emissions in Denmark: The role of financial stability and energy productivity. Integrated Environmental Assessment and Management. [DOI:10.1002/ieam.4757] [PMID]
24. Pata, U. K., Yurtkuran, S., Ahmed, Z., & Kartal, M. T. (2023). Do life expectancy and hydropower consumption affect ecological footprint? Evidence from novel augmented and dynamic ARDL approaches. Heliyon, 9(9). [DOI:10.1016/j.heliyon.2023.e19567] [PMID] []
25. Pesaran, H.M. & pesaran. B. (1997). Working with Microfit 4.0: An Introduction to Econometrics, Oxford University Press, Oxford.
26. Pesaran, H.M. & shin, Y. (1998). An Autoregressive Distributed lag Modeling Approach to Cointegration Analysis, In (Ed) S. Storm. The Econometrics and Economic Theory in the 20th Century, Chapter II. Cambridge University Press, Cambridge. [DOI:10.1017/CCOL521633230.011]
27. Pesaran, M. H., Shin, Y. & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of Applied Econometrics, 16 (3), 289-326. [DOI:10.1002/jae.616]
28. Pfeiffer, B. & Mulder, P., (2013): Explaining the diffusion of renewable energy technology in developing countries. Energy Economics, 40, 285-296. [DOI:10.1016/j.eneco.2013.07.005]
29. Raghutla, C., Padmagirisan, P., Sakthivel, P., Chittedi, K. R., & Mishra, S. (2022). The effect of renewable energy consumption on ecological footprint in N-11 countries: Evidence from Panel Quantile Regression Approach. Renewable Energy, 197, 125-137. [DOI:10.1016/j.renene.2022.07.100]
30. Roy, A. (2024). The impact of foreign direct investment, renewable and non-renewable energy consumption, and natural resources on ecological footprint: an Indian perspective. International Journal of Energy Sector Management, 18(1), 141-161. [DOI:10.1108/IJESM-09-2022-0004]
31. Sahoo, M., & Sethi, N. (2021). The intermittent effects of renewable energy on ecological footprint: evidence from developing countries. Environmental Science and Pollution Research, 28(40), 56401-56417. [DOI:10.1007/s11356-021-14600-3] [PMID]
32. Shahinifar, M. & Habibi, S. (2016). Application of Ecological Footprint Method in Regional Geographic Assessment (Case Study: Kermanshah County). Environmental Design, 9 (32): 41-62. (in Persian).
33. Sharma, R., Sinha, A., & Kautish, P. (2021). Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia. Journal of Cleaner Production, 285, 124867. [DOI:10.1016/j.jclepro.2020.124867]
34. Shokoohi, Z., Dehbidi, N. K., & Tarazkar, M. H. (2022). Energy intensity, economic growth and environmental quality in populous Middle East countries. Energy, 239, 122164. [DOI:10.1016/j.energy.2021.122164]
35. Siddiki, J. U. (2000). Demand for money in Bangladesh: a cointegration analysis. Applied Economics, 32 (15): 1977-1984. [DOI:10.1080/00036840050155904]
36. Singh, R. L., & Singh, P. K. (2017). Global environmental problems. Principles and applications of environmental biotechnology for a sustainable future, 13-41. [DOI:10.1007/978-981-10-1866-4_2]
37. Tarazkar, M. H., Dehbidi, N. K., & Bakhshoodeh, M. (2018). The effects of economic development and urbanization on pollution emissions in Iran. Agricultural Economics Research, 10(2), 155-174. [In Persian]. [https://DOI:20.1001.1.20086407.1397.10.38.10.2]
38. Tarazkar, M. H., Kargar Dehbidi, N., & Shokoohi, Z. (2018). Estimating the ecological footprint of agricultural production in D-8 Islamic countries. Environmental Sciences, 16(4), 17-32. [In Persian].
39. Tarazkar, M. H., Kargar, N., Esfanjari, R., & Ghorbaniyan, E. (2020). The impact of economic growth on environmental degradation in Middle East region: application of ecological footprint. Journal of natural environment, 73(1), 77-90. [In Persian]. [https://DOI: 10.22059/jne.2020.261850.1541]
40. Ucan, O., Aricioglu, E. and Yucel, F., (2014): Energy Consumption and Economic Growth Nexus: Evidence from Developed Countries in Europe. International Journal of Energy Economics and Policy, 3, 411-419.
41. Uddin, G. A., Salahuddin, M., Alam, K. & Gow J. (2017). Ecological footprint and real income: Panel data evidence from the 27 highest emitting countries. Ecological Indicators, 77, 166-175. [DOI:10.1016/j.ecolind.2017.01.003]
42. Voumik, L. C., Rahman, M. H., & Hossain, M. S. (2022). Investigating the subsistence of Environmental Kuznets Curve in the midst of economic development, population, and energy consumption in Bangladesh: Imminent of ARDL model. Heliyon, 8(8). [DOI:10.1016/j.heliyon.2022.e10357] [PMID] []
43. Wackernagel, M., Monfreda, C., Erb, K.H., Haberl, H. & Schulz, N.B. (2004). Ecological footprint time series of Austria, the Philippines, and South Korea for 1961-1999: comparing the conventional approach to an 'actual land area' approach. Land Use Policy, 21, 261-269. [DOI:10.1016/j.landusepol.2003.10.007]
44. Wang, Q., Zhang, F., & Li, R. (2023). Revisiting the environmental kuznets curve hypothesis in 208 counties: The roles of trade openness, human capital, renewable energy and natural resource rent. Environmental Research, 216, 114637. [DOI:10.1016/j.envres.2022.114637] [PMID]
45. Wang, Z., Asghar, M. M., Zaidi, S. A. H., Nawaz, K., Wang, B., Zhao, W., & Xu, F. (2020). The dynamic relationship between economic growth and life expectancy: Contradictory role of energy consumption and financial development in Pakistan. Structural Change and Economic Dynamics, 53, 257-266. [DOI:10.1016/j.strueco.2020.03.004]
46. WDI (World Development Indicators), (2024): Retrieved July 18, 2024, from [http: www.worldbank.org.]
47. Wilson, J. & Anielski, M. (2005). Ecological Footprints of Canadian Municipalities and Regions, the Canadian Federation of Canadian Municipalities, Anielski Management Inc, [http: www.anielski.com.]
48. Zhang, B., Wang, B., & Wang, Z. (2017). Role of renewable energy and non-renewable energy consumption on EKC: evidence from Pakistan. Journal of cleaner production, 156, 855-864. [DOI:10.1016/j.jclepro.2017.03.203]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به فصلنامه پژوهشنامه اقتصاد و برنامه ریزی می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 |

Designed & Developed by : Yektaweb