1. Cafaro, D. C., & Cerdá, J. (2004). Optimal Scheduling of Multiproduct Pipeline Systems Using a Non-Discrete MILP Formulation. Computers & Chemical Engineering, 28(10), 2053-2068. [
DOI:10.1016/j.compchemeng.2004.03.010]
2. Cafaro, D. C., & Cerdá, J. (2010). Operational Scheduling of Refined Products Pipeline Networks with Simultaneous Batch Injections. Computers & Chemical Engineering, 34(10), 1687-1704. [
DOI:10.1016/j.compchemeng.2010.03.005]
3. Cafaro, D. C., & Cerdá, J. (2014). Rigorous Formulation for the Scheduling of Reversible-Flow Multiproduct Pipelines. Computers & Chemical Engineering, 61(1), 59-76. [
DOI:10.1016/j.compchemeng.2013.10.006]
4. Cafaro, V. G., Cafaro, D. C., Méndez, C. A., & Cerdá, J. (2015). Optimization Model for the Detailed Scheduling of Multi-Source Pipelines. Computers & Industrial Engineering, 88(1), 395-409. [
DOI:10.1016/j.cie.2015.07.022]
5. Castro, P. M., & Mostafaei, H. (2019). Batch-Centric Scheduling Formulation for Treelike Pipeline Systems with Forbidden Product Sequences. Computers & Chemical Engineering, 122(1), 2-18. [
DOI:10.1016/j.compchemeng.2018.04.027]
6. Chen, H., Zuo, L., Wu, C., Wang, L., Diao, F., Chen, J., & Huang, Y. (2017). Optimizing Detailed Schedules of a Multiproduct Pipeline by a Monolithic MILP Formulation. Journal of Petroleum Science and Engineering, 159(1), 148-163. [
DOI:10.1016/j.petrol.2017.09.036]
7. Herrán, A., de la Cruz, J. M., & De Andrés, B. (2010). A Mathematical Model for Planning Transportation of Multiple Petroleum Products in a Multi-Pipeline System. Computers & Chemical Engineering, 34(3), 401-413. [
DOI:10.1016/j.compchemeng.2009.11.014]
8. Herrán, A., de la Cruz, J. M., & De Andrés, B. (2012). Global Search Metaheuristics for Planning Transportation of Multiple Petroleum Products in a Multi-Pipeline System. Computers & Chemical Engineering, 37(1), 248-261. [
DOI:10.1016/j.compchemeng.2011.10.003]
9. Magatão, L., Arruda, L. V., & Neves Jr, F. (2004). A Mixed Integer Programming Approach for Scheduling Commodities in a Pipeline. Computers & Chemical Engineering, 28(1-2), 171-185. [
DOI:10.1016/S0098-1354(03)00165-0]
10. Magatão, L., Arruda, L. V., & Neves-Jr, F. (2011). A Combined CLP-MILP Approach for Scheduling Commodities in a Pipeline. Journal of Scheduling, 14(1), 57-87. [
DOI:10.1007/s10951-010-0186-9]
11. MirHassani, S., & Ghorbanalizadeh, M. (2008). The Multi-Product Pipeline Scheduling System. Computers & Mathematics with Applications, 56(4), 891-897. [
DOI:10.1016/j.camwa.2008.01.035]
12. MirHassani, S., & Jahromi, H. F. (2011). Scheduling Multi-Product Tree-Structure Pipelines. Computers & Chemical Engineering, 35(1), 165-176. [
DOI:10.1016/j.compchemeng.2010.03.018]
13. Moradi, S., & MirHassani, S. (2015). Transportation Planning for Petroleum Products and Integrated Inventory Management. Applied Mathematical Modelling, 39(23-24), 7630-7642. [
DOI:10.1016/j.apm.2015.04.023]
14. Mostafaei, H., Castro, P. M., & Ghaffari-Hadigheh, A. (2016). Short-Term Scheduling of Multiple Source Pipelines with Simultaneous Injections and Deliveries. Computers & Operations Research, 73(1), 27-42. [
DOI:10.1016/j.cor.2016.03.006]
15. Rejowski Jr, R., & Pinto, J. M. (2003). Scheduling of a Multiproduct Pipeline System. Computers & Chemical Engineering, 27(8-9), 1229-1246. [
DOI:10.1016/S0098-1354(03)00049-8]
16. Rejowski Jr, R., & Pinto, J. M. (2004). Efficient MILP Formulations and Valid Cuts for Multiproduct Pipeline Scheduling. Computers & Chemical Engineering, 28(8), 1511-1528. [
DOI:10.1016/j.compchemeng.2003.12.001]
17. Sasikumar, M., Prakash, P. R., Patil, S. M., & Ramani, S. (1997). PIPES: A Heuristic Search Model for Pipeline Schedule Generation. Knowledge-Based Systems, 10(3), 169-175. [
DOI:10.1016/S0950-7051(97)00026-9]
18. Zhang, H., Liang, Y., Liao, Q., Wu, M., & Yan, X. (2017). A Hybrid Computational Approach for Detailed Scheduling of Products in a Pipeline with Multiple Pump Stations. Energy, 119(1), 612-628. [
DOI:10.1016/j.energy.2016.11.027]