Volume 29, Issue 1 (Spring 2024)                   JPBUD 2024, 29(1): 21-50 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Daneshmand A, Mazyaki A, Gheidari M J. (2024). The Effects of Income Support Policy on Covid-19 Related Mortality: A Cross-Country Study. JPBUD. 29(1), 21-50. doi:10.61186/jpbud.29.1.21
URL: http://jpbud.ir/article-1-2273-en.html
1- Department of Political Economy and Policymaking, Faculty of Law and Political Science, Allameh Tabatabai University, Tehran, Iran. , daneshmand@atu.ac.ir
2- Department of Business Economics, Faculty of Economics, Allameh Tabatabai University, Tehran, Iran.
3- Master's degree in Development and Planning Economics, Faculty of Economics, Allameh Tabatabai University, Tehran, Iran.
Abstract:   (1754 Views)
The COVID-19 pandemic presented an immense global challenge, necessitating a delicate balance between preserving public health and sustaining economic and social equilibrium. This study employs econometric methods to investigate the influence of income support measures on COVID-19 mortality rates across 186 countries, spanning from January 1, 2020, to the onset of widespread vaccination campaigns, December 14, 2020. Employing the Least Absolute Shrinkage and Selection Operator (LASSO) for variable selection and the Augmented Mean Group estimator (AMG) for data analysis, the study discovers a significant reduction in COVID-19 mortality linked to income support. This effect primarily stems from alleviating poverty-related vulnerabilities and enhancing adherence to public health guidelines. Emphasizing the pivotal role of unconditional cash transfers during crises, the research underscores the varying efficacy of income support over time, with the most pronounced impact observed shortly after implementation. Nonetheless, it issues a cautionary note, particularly for developing nations, urging against an exclusive reliance on financial aid without addressing other determinants influencing adherence to health protocols, which could potentially curtail policy effectiveness. Advocating for a comprehensive approach, the study stresses the integration of financial assistance with broader strategies aimed at mitigating mortality during natural disasters.
Full-Text [PDF 1187 kb]   (366 Downloads)    
Type of Study: Applicable | Subject: health, education, welfare economics
Received: Mar 10 2024 | Accepted: Jun 11 2024 | ePublished: Sep 09 2024

References
1. Ablaza, C., Perales, F., Parsell, C., Middlebrook, N., Robinson, R. N., Kuskoff, E., & Plage, S. (2023). Increases in Income-Support Payments Reduce the Demand for Charity: A Difference-in-Difference Analysis of Charitable-Assistance Data from Australia over the COVID-19 Pandemic. Plos One, 18(7), e0287533. [DOI:10.1371/journal.pone.0287533] [PMID] []
2. Aminjonov, U., Bargain, O., & Bernard, T. (2023). Gimme Shelter. Social Distancing and Income Support in Times of Pandemic. European Economic Review, 157(1), 104507. [DOI:10.1016/j.euroecorev.2023.104507] [PMID] []
3. Arefy, M., Zayandehroudi, M., & Jalaee Esfandabadi, S. A. (2023). Effect of Health Index on Economic Growth (Provincial Approach). Planning and Budgeting, 28(4), 165-194. [http://jpbud.ir/article-1-2239-fa.html]
4. Asfaw, A. A. (2021). The Effect of Income Support Programs on Job Search, Workplace Mobility and COVID-19: International Evidence. Economics & Human Biology, 41(1), 100997. [DOI:10.1016/j.ehb.2021.100997] [PMID] []
5. Bähr, S., Frodermann, C., Kohlruss, J., Patzina, A., Stegmaier, J., & Trappmann, M. (2022). COVID-19, Subjective Well-Being and Basic Income Support in Germany. Zeitschrift für Sozialreform, 68(1), 85-117. [DOI:10.1515/zsr-2022-0005]
6. Brewer, M., & Gardiner, L. (2020). The Initial Impact of COVID-19 and Policy Responses on Household Incomes. Oxford Review of Economic Policy, 36(Supplement_1), S187-S199. [DOI:10.1093/oxrep/graa024] []
7. Bui, D., Dräger, L., Hayo, B., & Nghiem, G. (2022). The Effects of Fiscal Policy on Households During the COVID-19 Pandemic: Evidence from Thailand and Vietnam. World Development, 153(1), 105828. [DOI:10.1016/j.worlddev.2022.105828] [PMID] []
8. Centers for Disease Control and Prevention (CDC) (2023). Principles of Epidemiology in Public Health Practice, Third Edition: An Introduction to Applied Epidemiology and Biostatistics. Retrieved from [https://archive.cdc.gov/www_cdc_gov/csels/dsepd/ss1978/index.html]
9. Cohen, C., & Werker, E. D. (2008). The Political Economy of'Natural Disasters. Journal of Conflict Resolution, 52(6), 795-819. [DOI:10.1177/0022002708322157]
10. Curi-Quinto, K., Sánchez, A., Lago-Berrocal, N., Penny, M. E., Murray, C., Nunes, R., Favara, M., Wijeyesekera, A., Lovegrove, J. A., & Soto-Cáceres, V. (2021). Role of Government Financial Support and Vulnerability Characteristics Associated with Food Insecurity during the COVID-19 Pandemic among Young Peruvians. Nutrients, 13(10), 3546. [DOI:10.3390/nu13103546] [PMID] []
11. Daneshmand, A., & Mazyaki, A. (2023). Optimal Social Assistance Strategies in Response to the COVID-19 Crisis. Available at SSRN 4585895.
12. Eberhardt, M., & Bond, S. (2009). Cross-Section Dependence in Nonstationary Panel Models: A Novel Estimator. MPRA Paper No. 17692. [https://mpra.ub.uni-muenchen.de/17692]
13. Eberhardt, M., & Teal, F. (2011). Econometrics for Grumblers: A New Look at the Literature on Cross‐Country Growth Empirics. Journal of Economic Surveys, 25(1), 109-155. [DOI:10.1111/j.1467-6419.2010.00624.x]
14. Gentilini, U., Almenfi, M., Blomquist, J., Dale, P., De la Flor Giuffra, L., Desai, V., Fontenez, M., Galicia, G., Lopez, V., & Marin, G. (2021). Global Database on Social Protection and Jobs Responses to COVID-19: Version 15 (May 14). World Bank, Washington DC.
15. Hale, T., Angrist, N., Goldszmidt, R., Kira, B., Petherick, A., Phillips, T., Webster, S., Cameron-Blake, E., Hallas, L., & Majumdar, S. (2021). A Global Panel Database of Pandemic Policies (Oxford COVID-19 Government Response Tracker). Nature Human Behaviour, 5(4), 529-538. [DOI:10.1038/s41562-021-01079-8] [PMID]
16. Hastie, T., Tibshirani, R., & Wainwright, M. (2015). Statistical Learning with Sparsity (Vol. 143). CRC Press. [DOI:10.1201/b18401]
17. Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Vol. 2). Springer. [DOI:10.1007/978-0-387-84858-7]
18. Pangallo, M., Aleta, A., del Rio-Chanona, R. M., Pichler, A., Martín-Corral, D., Chinazzi, M., Lafond, F., Ajelli, M., Moro, E., & Moreno, Y. (2024). The Unequal Effects of the Health-Economy Trade-Off during the COVID-19 Pandemic. Nature Human Behaviour, 8(2), 264-275. [DOI:10.1038/s41562-023-01747-x] [PMID] []
19. Pourmohammadi, M., & Yousefi, K. (2021). Pandemic in Labor Market: Evidence from Iran. Planning and Budgeting, 25(4), 69-94. [In Farsi] [DOI:10.52547/jpbud.25.4.69]
20. Settele, S., & Shupe, C. (2022). Lives or Livelihoods? Perceived Trade-Offs and Policy Views. The Economic Journal, 132(643), 1150-1178. [DOI:10.1093/ej/ueab077] []
21. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58(1), 267-288. [DOI:10.1111/j.2517-6161.1996.tb02080.x]
22. World Health Organization. (2022). A Healthy Return: Investment Case for a Sustainably Financed WHO. https://www.who.int/publications/i/item/9789240050006 [https://www.who.int/publications/i/item/9789240050006]
23. World Health Organization. (2023). Coronavirus Disease (COVID-19) Weekly Epidemiological Update and Weekly Operational Update. 4 January. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---4-january-2023 [https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---4-january-2023]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 CC BY-NC 4.0 | Planning and Budgeting

Designed & Developed by : Yektaweb