Volume 24, Issue 3 (Autumn 2019)                   JPBUD 2019, 24(3): 61-85 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asgari M. (2019). Technical Efficiency in Iran’s Industry Sector: A Stochastic Frontier Analysis (SFA) Approach. JPBUD. 24(3), 61-85. doi:10.29252/jpbud.24.3.61
URL: http://jpbud.ir/article-1-1876-en.html
Assistant Professor, lInstitute for Trade Studies and Research (ITSR), Tehran, Iran. , M.asgari@itsr.ir
Abstract:   (4850 Views)
Nowadays, the most important factor affecting production is efficiency, which recovers economic performance, adjusts prices, enhances competitiveness, and improves social welfare and growth sustainability by influencing the production level. This paper aims to estimate the technical efficiency of production in Iran's industrial sector by implementing Stochastic Frontier Analysis (SAF); To this end, the Translog Function is used to estimate the production and technical performance of the Iranian industry sector in terms of four-digit International Standard Industrial Classification (ISIC) codes for the period 2010-2018. Accordingly, the panel data technique is applied to estimate the technical efficiency and production function Frontier Production Functions, the estimator of maximum likelihood variables of using value-added variables, labor force, capital, and energy based on four-digit ISIC codes. The results show that the chemical, petroleum, and coal industries ranked first in efficiency; textile manufacturing, clothing industry, wood, and cork industry, manufacture of articles of straw and plaiting materials, and paper and paper products ranked second in efficiency; Coke production and refined petroleum products, chemicals and chemical products, and manufacturing other non-metallic mineral products ranked third in efficiency; and lastly, manufacturing basic metals and fabricated metal products, except machinery and equipment, ranked as fourth.
Full-Text [PDF 1219 kb]   (1436 Downloads)    
Type of Study: Research |
Received: Feb 15 2020 | Accepted: Apr 26 2020 | ePublished: Sep 14 2020

References
1. Aigner, D., Lovell, C. K., & Schmidt, P. (1977). Formulation and Estimation of Stochastic Frontier Production Function Models. Journal of Econometrics, 6(1), 21-37. [DOI:10.1016/0304-4076(77)90052-5]
2. Battese, G. E., & Coelli, T. J. (1992). Frontier Production Functions, Technical Efficiency and Panel Data: With Application to Paddy Farmers in India. Journal of Productivity Analysis, 3(1-2), 153-169. [DOI:10.1007/BF00158774]
3. Bigsten, A., Collier, P., Dercon, S., Fafchamps, M., Gauthier, B., Gunning, J. W., ... Pattillo, C. (2000). Exports and Firm-Level Efficiency in African Manufacturing: University of Oxford, Institute of Economics and Statistics. WPS/2000-16
4. Çalmaşur, G. (2016). Technical Efficiency Analysis in the Automotive Industry: A Stochastic Frontier Approach. International Journal of Economics, Commerce and Management, 4(4), 120-137.
5. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the Efficiency of Decision Making Units. European Journal of Operational Research, 2(6), 429-444. [DOI:10.1016/0377-2217(78)90138-8]
6. Coelli, T. J., Rao, D. P., O'Donnell, C. J., & Battese, G. E. (1998). An Introduction to Productivity and Efficiency Analysis. Springer Science: New York. [DOI:10.1007/978-1-4615-5493-6]
7. Cornwell, C., Schmidt, P., & Sickles, R. C. (1990). Production Frontiers with Cross-Sectional and Time-Series Variation in Efficiency Levels. Journal of Econometrics, 46(1-2), 185-200. [DOI:10.1016/0304-4076(90)90054-W]
8. Debreu, G. (1951). The Coefficient of Resource Utilization. Econometrica: Journal of the Econometric Society, 19(3), 273-292. [DOI:10.2307/1906814]
9. Fahmy-abdullah, M., Sieng, L. W., & Isa, H. M. (2018). Technical Efficiency in Malaysian Textile Manufacturing Industry: A Stochastic Frontier Analysis (SFA) Approach. International Journal of Economics & Management, 12(2), 407-419.
10. Farrell, M. J. (1957). The Measurement of Productive Efficiency. Journal of the Royal Statistical Society: Series A (General), 120(3), 253-281. [DOI:10.2307/2343100]
11. Greene, W. (2005). Fixed and Random Effects in Stochastic Frontier Models. Journal of Productivity Analysis, 23(1), 7-32. [DOI:10.1007/s11123-004-8545-1]
12. Hayek, F. A. (1949). The Meaning of Competition, Individualism and Economic Order: London, Routledge & Kegan Paul.
13. Hirshleifer, J., & Glazer, A. (1992). Price Theory and Applications: Prentice Hall.
14. Jondrow, J., Lovell, C. K., Materov, I. S., & Schmidt, P. (1982). On the Estimation of Technical Inefficiency in the Stochastic Frontier Production Function Model. Journal of Econometrics, 19(2-3), 233-238. [DOI:10.1016/0304-4076(82)90004-5]
15. Koopmans, T. (1951). Activity Analysis of Production and Allocation. John Wiley and Sons. New York.
16. Kumbhakar, S. C. (1990). Production Frontiers, Panel Data, and Time-Varying Technical Inefficiency. Journal of Econometrics, 46(1-2), 201-211. [DOI:10.1016/0304-4076(90)90055-X]
17. Meeusen, W., & Van Den Broeck, J. (1977). Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error. International Economic Review, 18(2), 435-444. [DOI:10.2307/2525757]
18. Mohd Noor, Z., & Ismail, R. (2007). Technical Efficiency Analysis in Small and Medium Scale Industry in Malaysia. International Journal of Management Studies (IJMS), 14(1), 199-218.
19. Mok, V., Yeung, G., Han, Z., & Li, Z. (2007). Leverage, Technical Efficiency and Profitability: An Application of DEA to Foreign-Invested Toy Manufacturing Firms in China. Journal of Contemporary China, 16(51), 259-274. [DOI:10.1080/10670560701194509]
20. Pitt, M. M., & Lee, L.-F. (1981). The Measurement and Sources of Technical Inefficiency in the Indonesian Weaving Industry. Journal of Development Economics, 9(1), 43-64. [DOI:10.1016/0304-3878(81)90004-3]
21. Quesada, G. P. (2017). Technical Efficiency of Dairy Farms in Uruguay: A Stochastic Production Frontier Analysis. The International Conference on Decision Economics.
22. Shephard, R. (1953). Cost and Production Functions. Princeton University Press. Princeton, NJ.
23. Singh, A. (1977). UK Industry and the World Economy: A Case of De-Industrialisation? Cambridge Journal of Economics, 1(2), 113-136.
24. Sumanth, D. J. (1984). Productivity Engineering and Management: Productivity Measurement, Evaluation, Planning, and Improvement in Manufacturing and Service Organizations: McGraw-Hill College.

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2024 CC BY-NC 4.0 | Planning and Budgeting

Designed & Developed by : Yektaweb