1. Accongiagioco, G., Altman, E., Gregori, E., & Lenzini, L. (2014). A Game Theoretical Study of Peering vs Transit in the Internet. Paper Presented at the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). [
DOI:10.1109/INFCOMW.2014.6849330]
2. Bagheri, A., & Nazeman, H. (2020). Investigating Competition in Iran's Electricity Industry. The Journal of Planning and Budgeting, 25(1), 87-108. http://jpbud.ir/article-1-46-fa.html [
DOI:10.29252/jpbud.25.1.87]
3. Böttger, T., Antichi, G., Fernandes, E. L., di Lallo, R., Bruyere, M., Uhlig, S., . . . Castro, I. (2018). Shaping the Internet: 10 Years of IXP Growth. arXiv preprint arXiv:1810.10963.
4. Boyd, S., Kim, S.-J., Vandenberghe, L., & Hassibi, A. (2007). A Tutorial on Geometric Programming. Optimization and Engineering, 8(1), 67-127. [
DOI:10.1007/s11081-007-9001-7]
5. Chen, C.-K. (2000). Optimal Determination of Quality Level, Selling Quantity and Purchasing Price for Intermediate Firms. Production Planning & Control, 11(7), 706-712. [
DOI:10.1080/095372800432179]
6. Courcoubetis, C., & Weber, R. (2003). Pricing Communication Networks: Economics, Technology and Modelling: John Wiley & Sons. [
DOI:10.1002/0470867175]
7. Duffin, R., & Peterson, E. L. (1966). Duality Theory for Geometric Programming. SIAM Journal on Applied Mathematics, 14(6), 1307-1349. [
DOI:10.1137/0114105]
8. Ecker, J. G. (1980). Geometric Programming: Methods, Computations and Applications. SIAM Review, 22(3), 338-362. [
DOI:10.1137/1022058]
9. Ha, S., Sen, S., Joe-Wong, C., Im, Y., & Chiang, M. (2012). TUBE: Time-Dependent Pricing for Mobile Data. Paper Presented at the Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication. [
DOI:10.1145/2342356.2342402]
10. Hande, P., Chiang, M., Calderbank, R., & Zhang, J. (2010). Pricing Under Constraints in Access Networks: Revenue Maximization and Congestion Management. Paper Presented at the 2010 Proceedings IEEE INFOCOM. [
DOI:10.1109/INFCOM.2010.5461954]
11. He, H., Xu, K., & Liu, Y. (2012). Internet Resource Pricing Models, Mechanisms, and Methods. Networking Science, 1(1-4), 48-66. [
DOI:10.1007/s13119-011-0004-5]
12. Islam, S., & Mandal, W. A. (2019). Fuzzy Geometric Programming Techniques and Applications: Springer. [
DOI:10.1007/978-981-13-5823-4]
13. Kamaei, S., Kamaei, S., & Saraj, M. (2019). Solving a Posynomial Geometric Programming Problem with Fully Fuzzy Approach. Yugoslav Journal of Operations Research, 29(2), 203-220. [
DOI:10.2298/YJOR181115005K]
14. Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate Control for Communication Networks: Shadow Prices, Proportional Fairness and Stability. Journal of the Operational Research Society, 49(3), 237-252. [
DOI:10.1057/palgrave.jors.2600523]
15. Kim, D., & Lee, W. J. (1998). Optimal Joint Pricing and Lot Sizing with Fixed and Variable Capacity. European Journal of Operational Research, 109(1), 212-227. [
DOI:10.1016/S0377-2217(97)00100-8]
16. MacKie-Mason, J., & Varian, H. (1995). Public Access to the Internet: MIT Press, Chapter Pricing the Internet.
17. Mazumdar, R., Mason, L. G., & Douligeris, C. (1991). Fairness in Network Optimal Flow Control: Optimality of Product Forms. IEEE Transactions on Communications, 39(5), 775-782. [
DOI:10.1109/26.87140]
18. Muttitanon, W., & Samanchuen, T. (2020). Internet Cost Reduction Using Internet Exchange Point: A Case Study of Internet Network of Thailand. Wireless Personal Communications, 115(1), 3177-3198. [
DOI:10.1007/s11277-020-07198-1]
19. Ojha, A. K., & Biswal, K. (2010). Posynomial Geometric Programming Problems with Multiple Parameters. Journal of Computing, 2(1), 84-90.
20. Rahmaniani, R., Sadjadi, S. J., Shafia, M. A., & Rahmaniyan, N. (2012). The Optimal Pricing Model in an Uncertain and Competitive Environment: Using Possibilitic Geometric Programming Approach. African Journal of Business Management, 6(46), 11565-11574. [
DOI:10.5897/AJBM12.704]
21. Rao, S. S. (2019). Engineering Optimization: Theory and Practice: John Wiley & Sons. [
DOI:10.1002/9781119454816]
22. Sadjadi, S., Yousefli, A., & Ghezelsoflou, R. (2011). Optimal Pricing for Internet Service Providers: Fuzzy Geometric Programming Model. African Journal of Business Management, 5(17), 7291-7295. [
DOI:10.5897/AJBM10.1122]
23. Sato, K., & Nakashima, K. (2020). Optimal Pricing Problem for a Pay-Per-Use System Based on the Internet of Things with Intertemporal Demand. International Journal of Production Economics, 221(1), 107477. [
DOI:10.1016/j.ijpe.2019.08.012]
24. Sen, S., Joe-Wong, C., Ha, S., & Chiang, M. (2013). Smart Data Pricing (SDP): Economic Solutions to Network Congestion. Recent Advances in Networking, 1(1), 221-274.
25. Shakkottai, S., Srikant, R., Ozdaglar, A., & Acemoglu, D. (2008). The Price of Simplicity. IEEE Journal on Selected Areas in Communications, 26(7), 1269-1276. [
DOI:10.1109/JSAC.2008.080923]
26. You, P.-S., Hsieh, Y.-C., & Huang, C.-M. (2009). A Particle Swarm Optimization Based Algorithm to the Internet Subscription Problem. Expert Systems with Applications, 36(3), 7093-7098. [
DOI:10.1016/j.eswa.2008.08.080]
27. Zadeh, L. A. (1978). Fuzzy Sets as a Basis for a Theory of Possibility. Fuzzy Sets and Systems, 1(1), 3-28. [
DOI:10.1016/0165-0114(78)90029-5]
28. Zener, C. (1961). A Mathematical Aid in Optimizing Engineering Designs. Proceedings of the National Academy of Sciences of the United States of America, 47(4), 537-539. [
DOI:10.1073/pnas.47.4.537]
29. Zhang, F. (2011). Pricing in Multi-Service Communication Networks: A Game-theoretic Approach. (Doctor of Philosophy). The University of Oklahoma.